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Digital audio synthesis for pianos has a, undesirable level of latency and variance. This paper details the research 
done to identify the contribution of each subsystem to the total latency and variance. We focus on the effect of the 
PNOscan hardware, board protocols, MIDI conversion, and audio synthesis. Our preliminary research identified the 
contribution to total latency and variance from each subsystem. We then detail and explain a proposed protocol and 
replacement system removing the latency and improving the theoretical throughput of the system. After analyzing our 
prototype, we identify specifications for a final product and the changes between the current system, the prototype, 
and the final product that make the improvements for this system.  	  
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Overview	  
Digital audio synthesis for pianos as performed in the system currently used by Steinway, implemented by 

QRS, has an inherent, unacceptable level of latency and variance which is noticeable to listeners. Our preliminary 
research identified the contribution to total latency and variance from each subsystem. Data transfer through the 
PNOscan hardware system underneath the keys, which is in control of velocity sensing and initial data generation, 
incurs the largest amount of latency. Conversion from the board protocol of the PNOscan device to MIDI messages 
and the synthesis of those MIDI messages through a Software Synthesizer Host (SSH), such as the Muse Receptor, 
incur a cumulative latency of much less than a millisecond. The PNOscan hardware subsystem inherits most of its 
latency from its modularity, not the velocity sensing implementation. In the current system single notes incur a 
standard latency, still above an acceptable threshold; however, the current implementation causes the latency for 
polyphony to linearly increase with the number of notes. Our proposed design removes the serialization, the root 
cause of this delay, and replaces it with a parallelized system operating with an increased bandwidth to remove the 
latency and variance currently visible. The prototype developed for this system operates almost two orders of 
magnitude faster than the current system with the variance reduced to a negligible amount.  Due to physical limits of 
our prototype, this paper concludes with a proposal for a final implementation useable for a full 88 key piano. 

	  

Research	  
The following sections detail the results of our preliminary research on subsystem contribution to latency and 

variance of this Digital Audio Synthesis System. The PNOscan Protocol section details the latency and variance 
findings of the PNOscan hardware boards and internal protocols. The Software Synthesizer Host (SSH) section 
outlines the functionality and delay associated with the transformation of the PNOscan’s internal protocol to audio 
output. The PNOscan Optics section details the velocity sensing process performed by the optical sensors on the 
PNOscan and the associated delay and variance.    
 For the following sections, system speed will often be referred to in notes per millisecond due to the MIDI 
protocol’s limitation of only being able to specify notes at a resolution of one millisecond.  

PNOscan	  Protocol	  
The PNOscan hardware system is divided into four identical boards that monitor and register key activity, a 

smaller board monitoring pedal activity, and an external module used solely for conversion from an internal protocol 
to either Hardware-MIDI or MIDI-over-USB. Each of the four boards is connected to the others in a daisy-chain 
fashion, see Figure	   1. The microprocessor on each board receives information from two sources: an array of 
sensors, monitoring key movement, and the previous daisy-chained board.  
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Figure	  1:	  PNOscan	  Block	  Diagram 
 
The device identifies a key’s associated velocity when pressed, from sensor readings, and its relative note 

number for the board, between 0 and 21. The other board conveys a 30 bit message (duration 240µs) including an 8 
bit velocity number, between 0-127, an 8 bit note number, and another 8 bit message used for channel. The duration 
of a message alone theoretically constricts the number of notes per millisecond to four.  

Table	  1:	  Variance	  and	  Delay	  of	  Polyphony	  of	  Current	  System	  
 

Number of Notes Pressed Minimum Delay (ms) Maximum Delay (ms) 
1 1.0 1.4 
2 1.4 2.8 
3 1.8 3.2 
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An additional delay is incurred through the propagation of data through the boards. When a 30-bit message is 
received on a new board, the note number is incremented by 22 to keep track of the global note number to which it 
corresponds (A0 is globally note 88 for this protocol). The largest delay and variance come from this cascading 
system. Table 1:	  Variance	  and	  Delay	  of	  Polyphony	  of	  Current	  System shows the variance and magnitude of 
delay for the system.  Note that we were physically unable to produce more than 3 notes in 1 millisecond.  

 

 
Figure 2: Line 0 (Digital) - PNOscan Output, Line 2 (Digital)- PNOscan Internal Clock, Line 3 (Digital)- Board Pre-Buffer Signal, 

Line 3 (Analog) - Board 4 Output Signal, Line 4 (Analog) - PNOscan Output Signal 
 
Figure 2: Line 0 (Digital) - PNOscan Output, Line 2 (Digital)- PNOscan Internal Clock, Line 3 (Digital)- Board 

Pre-Buffer Signal, Line 3 (Analog) - Board 4 Output Signal, Line 4 (Analog) - PNOscan Output Signalabove, shows 
the waveforms resulting from two keys registering in the same millisecond. The output for the first note is registered 
1.1ms after generation and for the second note 1.9ms after generation.  

 

Software	  Synthesizer	  Host	  (SSH)	  
Two different SSHs were used for this system: the Muse Receptor 2 and the Yamaha-Motif Rack. Running with 

MIDI-over-USB neither contributed to the latency of the system in a meaningful way. When Hardware-MIDI is used to 
transmit data between the PNOscan Control Module and the SSH, the latency is increased as shown in Figure	   3:	  
MIDI-‐over-‐USB	  Latency and Figure	  4:	  Hardware-‐MIDI	  Latency.  

	  
Figure	  3:	  MIDI-‐over-‐USB	  Latency 
 

2ms	  
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Figure	  4:	  Hardware-‐MIDI	  Latency	  
	  
This difference in latency is expected due to the limitations of Hardware-MIDI and the theoretical speeds 

compared to MIDI-over-USB. The limits of the transmission and their effect on the magnitude and variance of latency 
become even more pronounced with polyphony. Although not visible in the analog spectrum, this can be seen, in the 
digital spectrum, in Figure 2. 

PNOscan	  Optics	  
 As previously mentioned, the velocity sensing implementation performed on the PNOscan has a negligible 

effect on the total latency of the system.  These velocities are determined by signal analysis on output of an infrared 
(IR) transceiver. This signal is a relative metric of distance between key and sensor. Using a linear relationship 
between distance and velocity, a digital signal processing (DSP) chip, shared between multiple sensors, uses the 
recorded curve to interpolate the key’s corresponding velocity. Figure	   5:	   Since	   a	   single	   key	   press	   can	   have	   a	  
travel	   time	  of	  over	  40ms,	  ample	   samples	  with	  which	   to	   calculate	  velocity	  are	  available	  and	   latency	   in	  
velocity	  determination	  can	  be	  eliminated., below shows the point during average key movement when audio is 
produced by the piano. 

 

	  
Figure	  5:	  Since	  a	  single	  key	  press	  can	  have	  a	  travel	  time	  of	  over	  40ms,	  ample	  samples	  with	  which	  to	  calculate	  velocity	  

are	  available	  and	  latency	  in	  velocity	  determination	  can	  be	  eliminated.	  
 

4ms	  
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Design	  	  
Our proposed system is specifically a reimplementation of the PNOscan hardware boards described in 

PNOscan Protocol.  The SSH, running MIDI-over-USB, and PNOscan optics from the current system perform their 
functions within the desired latency requirements and have been preserved in our proposed system. We present here 
a design for the bridge between these two subsystems that keeps latency under the desired threshold in addition to 
increasing the transmission bandwidth by an order of magnitude. 

 

Physical	  System	  
Our system consists of multiple slave devices communicating with a single master device. The previous system 

used the external control module as the master device responsible for converting and transmitting serial data to the 
SSH. Where the previous control module would be required to shift in 8-bits for each note number or velocity, our 
master reads the data in parallel off of 8 lines at an even higher baud rate to increase the bandwidth for the system.  

	  
Figure	  6:	  System	  Diagram	  for	  Proposed	  Replacement	  System	  
	  
The slaves for our system communicate with the master over a shared bus reducing the delay caused by the 

daisy chaining of boards in the PNOscan system. Bus sharing adds an additional complication of interference on the 
bus; however, a slave select bus, shared between all slaves and asserted by the master device, operating in round 
robin, identifies which slave has bus write permissions. Each slave receives data representing velocity (7-bits) and 
corresponding note number (number of bits dependent on implementation) from the PNOscan optics subsystem. 
Slaves store information in a buffer queue which outputs data to the shared bus upon receiving write permission. 
Figure	  6 above shows the corresponding system diagram.   
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Protocol	  
This system uses an asynchronous protocol between multiple slaves and masters implementable by two Finite 

State Machines (FSMs), one each for slave and master. The master asserts a slave select (SS) signals, identifying 
which slave has write privileges, and an acknowledge signal (ACK) allowing for the asynchronous nature of the 
protocol. Each slave asserts a control signal (CTRL), corresponding to 4 different message types (note-on, 
note-off, velocity, no-data), and a data signal (DATA) which holds the data associated with the current 
control signal.  

Master	  FSM	  
The master constantly asserts a signal on the SS bus corresponding to a specific slave. After this signal is 

asserted, if CTRL has changed during a predetermined, implementation-specific time interval, the master knows it 
has received a message. If the CTRL signal has remained in the no-data state throughout this interval, the master 
changes its SS signal to specify another slave and repeats this process. 

Two CTRL signal transitions are possible during this time interval corresponding to the assertion of a note-on 
or note-off message. Due to the reliability of an asynchronous protocol, the master must toggle the ACK line to 
acknowledge a message was received. If the CTRL line is in a note-off state, the master waits for the CTRL line 
to return to a no-data state, changes its’ SS signal and returns to the start of the FSM. If the CTRL line is in a 
note-on state, the next message is guaranteed to be a velocity message. The master waits for CTRL to change to 
the velocity state, and toggles its ACK signal. The master then proceeds to wait for the no data CTRL signal, 
changes its SS when the change is observed, and returns to the beginning of the state diagram. This FSM, 
implemented for 4 slaves, is displayed below in Figure	  7 and the corresponding ASM is shown in Figure	  8. 

 

	  
Figure	  7:	  Master	  FSM	  for	  4	  slave	  setup	  
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Figure	  8:	  Master	  ASM	  for	  Proposed	  System	  
	  

Slave	  FSM	  
The slaves have simpler states, involving less computational power and I/O bandwidth than the master. A 

specific slave only asserts data when it receives its respective SS signal; each slave is assigned a unique ID 
corresponding to the write enable state of the SS signal. During a select cycle, a slave only sends one message; 
either in the form of a note number and velocity, in the case of a note-on message, or solely a note number, for a 
note-off message. After sending the note number or velocity the slave waits for the ACK signal to toggle before 
asserting the next piece of data. After the full note-on or note-off message has been sent to and 
acknowledged by the master, the slave asserts the no-data CTRL signal and data message to allow the next slave 
to write proper information. The ASM in Figure	  9 illustrates this process. 
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Figure	  9:	  ASM	  for	  Slave	  Device 
 

Implementation	  
 Our prototype implements our replacement for the PNOscan Hardware sub-system. For demonstration 

purposes, we primarily worked with readily available, off-the-shelf components with which we could efficiently 
develop and test. These results can be seen in the Prototype section. Our prototype is limited by the IO and 
processing capabilities of the hardware used; however, given more resources, an even greater speedup is possible 
and is described in the Error! Reference source not found. section.  

Prototype	  
Our prototype was implemented using a set of Arduino Uno boards as the devices for the master and slave 

boards. The Arduino Uno utilizes the ATmega328 chip by Atmel, Inc. This chip has a maximum operating frequency 
of 20 MHz and 23 I/O pins. However, not all of these pins are available through the Arduino board, which forced us to 
make certain concessions in our design. In a proprietary design, one could simply use the Atmel chip itself to gain 
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access to each pin, which would double the speed of communication when there is note information to be 
transmitted.   

 Below is a list indicating which pins on the Arduino have been used and for which purpose(s).Below, MISO 
stands for master input, slave output; MOSI stands for master output, slave input: 

 
• PORT C [5:0] (Analog pins 5:0) – Optical input on the slave only 
• PORT B [7:0] (Digital pins 13:8) – DATA: Note number/velocity data (MISO) 
• PORT D [7:6] (Digital pins 7:6) – CTRL: [Velocity or note number]:[note on or off] (MISO) 
• PORT D [5] (Digital pin 5) – ACK: Acknowledgement bit (MOSI) 
• PORT D [1:0] (Digital pins 1:0) – SS: Slave select up to 4 slaves (MOSI) 
 
The pin mappings above allow note number and velocity to assume a value between 0 and 255, corresponding 

to the 8-bit width of PORT B. Our prototype also uses up to 6 bits to specify a note number; however, due to I/O 
limitations of the board used, only 6 distinct inputs are available directly into the slave device, limiting the throughput 
of input to the slave devices. As limited by the bit-width of the SS bus, we have implemented the system using up to 
4 slaves. Additionally, the final product outputs MIDI-over-USB; however, the Arduino Uno board communicates to its 
USB module over a slow serial protocol and therefore cannot take advantage of the MIDI-over-USB speeds needed 
for this product. For this reason, our prototype does not have MIDI output functionality implemented. Instead it 
displays the reduction of latency in transferring data between the hardware boards which - as discussed in the 
Research section - is the largest bottleneck in the system. 

 

 
Figure 10: Lines [0:1] - Slave Select, Line [2] - ACK, Lines [3:4] - Control Signal (message type) 
 
Because our prototype is meant to demonstrate the proposed protocol, our system is setup for 4 slaves; 

however, only a single slave (Slave_ID == 1) is enabled to transmit data, the other two slaves’ write cycles are visible 
in the SS bus but send no data.  When the master polls a specific slave, that slave will send any information it has in 
a maximum of 23µs. Note-on messages take this maximum time due to their requirements to send note-on and 
velocity. In the case of a note-off message, this only requires 17µs since no velocity data is required. Lastly, 
if there is no information to send, the slave requires ~7µs to communicate this. These latencies mean a maximum of 
43 note-on MIDI messages per millisecond or an amortized 50 messages per millisecond maximum, computed 
through an average note-on/note-off combination. 
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Conclusions	  
Our hardware proposal for the final system removes the constraints imposed by the hardware for our prototype. 

Additionally, our proposal removes the serialization of note number and velocity during transmission of a note-on 
message by giving note number and velocity their own dedicated busses.  

A normal piano has 88 keys (7 octaves from A0 to C8 plus a third), which are monitored by 4 slaves, meaning 2 
bits of information. This specification means each slave device monitors 22 keys for messages. The PNOscan optics 
from the original system already monitors this number of keys allowing for easy integration into the rest of the 
proposed system. This means that each board will generate note numbers between 0-22 which can be conveyed 
over 5 bits of data. 22 ports are needed to monitor the input of the 22 keys. The shared velocity bus can be 
implemented with a 7-bit bus to convey data between 0-127. The control signal is implemented using 2 bits. ACK is 
implemented using 1 bit. This specification requires 39 ports on each slave.   

Utilizing a chip, such as the AT32UC3A0128 by Atmel, with a maximum frequency of 66 MHz its increased 
number of I/O pins, operating at a faster switching speed, gives us a speedup of 2-3 times that of our prototype. This 
gives us a final data transmission rate of approximately 300 MIDI messages per millisecond. This speed is faster 
than both the theoretical limit of MIDI-over-USB and the physical capabilities of a pianist.  
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