
TUFTS	 UNIVERSITY	

Inter-IC Protocol for Low
Latency Musical Applications

Steinway & Sons Research Grant

C. Hopkins, C. Powell, E. Formella
4/26/2012

	
	
	

Digital audio synthesis for pianos has a, undesirable level of latency and variance. This paper details the research
done to identify the contribution of each subsystem to the total latency and variance. We focus on the effect of the
PNOscan hardware, board protocols, MIDI conversion, and audio synthesis. Our preliminary research identified the
contribution to total latency and variance from each subsystem. We then detail and explain a proposed protocol and
replacement system removing the latency and improving the theoretical throughput of the system. After analyzing our
prototype, we identify specifications for a final product and the changes between the current system, the prototype,
and the final product that make the improvements for this system. 	

Page	 1	 of	 11	
	 	

Contents	
Overview	 ...	 2	

Research	 ..	 2	

PNOscan	 Protocol	 ...	 2	

Software	 Synthesizer	 Host	 (SSH)	 ...	 4	

PNOscan	 Optics	 ...	 5	

Design	 ..	 6	

Physical	 System	 ...	 6	

Protocol	 ...	 7	

Master	 FSM	 ...	 7	

Slave	 FSM	 ..	 8	

Implementation	 ..	 9	

Prototype	 ..	 9	

Conclusions	 ...	 11	

Bibliography	 ..	 11	

	

Page	 2	 of	 11	
	 	

Overview	
Digital audio synthesis for pianos as performed in the system currently used by Steinway, implemented by

QRS, has an inherent, unacceptable level of latency and variance which is noticeable to listeners. Our preliminary
research identified the contribution to total latency and variance from each subsystem. Data transfer through the
PNOscan hardware system underneath the keys, which is in control of velocity sensing and initial data generation,
incurs the largest amount of latency. Conversion from the board protocol of the PNOscan device to MIDI messages
and the synthesis of those MIDI messages through a Software Synthesizer Host (SSH), such as the Muse Receptor,
incur a cumulative latency of much less than a millisecond. The PNOscan hardware subsystem inherits most of its
latency from its modularity, not the velocity sensing implementation. In the current system single notes incur a
standard latency, still above an acceptable threshold; however, the current implementation causes the latency for
polyphony to linearly increase with the number of notes. Our proposed design removes the serialization, the root
cause of this delay, and replaces it with a parallelized system operating with an increased bandwidth to remove the
latency and variance currently visible. The prototype developed for this system operates almost two orders of
magnitude faster than the current system with the variance reduced to a negligible amount. Due to physical limits of
our prototype, this paper concludes with a proposal for a final implementation useable for a full 88 key piano.

	

Research	
The following sections detail the results of our preliminary research on subsystem contribution to latency and

variance of this Digital Audio Synthesis System. The PNOscan Protocol section details the latency and variance
findings of the PNOscan hardware boards and internal protocols. The Software Synthesizer Host (SSH) section
outlines the functionality and delay associated with the transformation of the PNOscan’s internal protocol to audio
output. The PNOscan Optics section details the velocity sensing process performed by the optical sensors on the
PNOscan and the associated delay and variance.
 For the following sections, system speed will often be referred to in notes per millisecond due to the MIDI
protocol’s limitation of only being able to specify notes at a resolution of one millisecond.

PNOscan	 Protocol	
The PNOscan hardware system is divided into four identical boards that monitor and register key activity, a

smaller board monitoring pedal activity, and an external module used solely for conversion from an internal protocol
to either Hardware-MIDI or MIDI-over-USB. Each of the four boards is connected to the others in a daisy-chain
fashion, see Figure	 1. The microprocessor on each board receives information from two sources: an array of
sensors, monitoring key movement, and the previous daisy-chained board.

Page	 3	 of	 11	
	 	

	
Figure	 1:	 PNOscan	 Block	 Diagram

The device identifies a key’s associated velocity when pressed, from sensor readings, and its relative note

number for the board, between 0 and 21. The other board conveys a 30 bit message (duration 240µs) including an 8
bit velocity number, between 0-127, an 8 bit note number, and another 8 bit message used for channel. The duration
of a message alone theoretically constricts the number of notes per millisecond to four.

Table	 1:	 Variance	 and	 Delay	 of	 Polyphony	 of	 Current	 System	

Number of Notes Pressed Minimum Delay (ms) Maximum Delay (ms)
1 1.0 1.4
2 1.4 2.8
3 1.8 3.2

Page	 4	 of	 11	
	 	

An additional delay is incurred through the propagation of data through the boards. When a 30-bit message is
received on a new board, the note number is incremented by 22 to keep track of the global note number to which it
corresponds (A0 is globally note 88 for this protocol). The largest delay and variance come from this cascading
system. Table 1:	 Variance	 and	 Delay	 of	 Polyphony	 of	 Current	 System shows the variance and magnitude of
delay for the system. Note that we were physically unable to produce more than 3 notes in 1 millisecond.

Figure 2: Line 0 (Digital) - PNOscan Output, Line 2 (Digital)- PNOscan Internal Clock, Line 3 (Digital)- Board Pre-Buffer Signal,

Line 3 (Analog) - Board 4 Output Signal, Line 4 (Analog) - PNOscan Output Signal

Figure 2: Line 0 (Digital) - PNOscan Output, Line 2 (Digital)- PNOscan Internal Clock, Line 3 (Digital)- Board

Pre-Buffer Signal, Line 3 (Analog) - Board 4 Output Signal, Line 4 (Analog) - PNOscan Output Signalabove, shows
the waveforms resulting from two keys registering in the same millisecond. The output for the first note is registered
1.1ms after generation and for the second note 1.9ms after generation.

Software	 Synthesizer	 Host	 (SSH)	
Two different SSHs were used for this system: the Muse Receptor 2 and the Yamaha-Motif Rack. Running with

MIDI-over-USB neither contributed to the latency of the system in a meaningful way. When Hardware-MIDI is used to
transmit data between the PNOscan Control Module and the SSH, the latency is increased as shown in Figure	 3:	
MIDI-‐over-‐USB	 Latency and Figure	 4:	 Hardware-‐MIDI	 Latency.

	
Figure	 3:	 MIDI-‐over-‐USB	 Latency

2ms	

Page	 5	 of	 11	
	 	

	
Figure	 4:	 Hardware-‐MIDI	 Latency	
	
This difference in latency is expected due to the limitations of Hardware-MIDI and the theoretical speeds

compared to MIDI-over-USB. The limits of the transmission and their effect on the magnitude and variance of latency
become even more pronounced with polyphony. Although not visible in the analog spectrum, this can be seen, in the
digital spectrum, in Figure 2.

PNOscan	 Optics	
 As previously mentioned, the velocity sensing implementation performed on the PNOscan has a negligible

effect on the total latency of the system. These velocities are determined by signal analysis on output of an infrared
(IR) transceiver. This signal is a relative metric of distance between key and sensor. Using a linear relationship
between distance and velocity, a digital signal processing (DSP) chip, shared between multiple sensors, uses the
recorded curve to interpolate the key’s corresponding velocity. Figure	 5:	 Since	 a	 single	 key	 press	 can	 have	 a	
travel	 time	 of	 over	 40ms,	 ample	 samples	 with	 which	 to	 calculate	 velocity	 are	 available	 and	 latency	 in	
velocity	 determination	 can	 be	 eliminated., below shows the point during average key movement when audio is
produced by the piano.

	
Figure	 5:	 Since	 a	 single	 key	 press	 can	 have	 a	 travel	 time	 of	 over	 40ms,	 ample	 samples	 with	 which	 to	 calculate	 velocity	

are	 available	 and	 latency	 in	 velocity	 determination	 can	 be	 eliminated.	

4ms	

Page	 6	 of	 11	
	 	

Design	 	
Our proposed system is specifically a reimplementation of the PNOscan hardware boards described in

PNOscan Protocol. The SSH, running MIDI-over-USB, and PNOscan optics from the current system perform their
functions within the desired latency requirements and have been preserved in our proposed system. We present here
a design for the bridge between these two subsystems that keeps latency under the desired threshold in addition to
increasing the transmission bandwidth by an order of magnitude.

Physical	 System	
Our system consists of multiple slave devices communicating with a single master device. The previous system

used the external control module as the master device responsible for converting and transmitting serial data to the
SSH. Where the previous control module would be required to shift in 8-bits for each note number or velocity, our
master reads the data in parallel off of 8 lines at an even higher baud rate to increase the bandwidth for the system.

	
Figure	 6:	 System	 Diagram	 for	 Proposed	 Replacement	 System	
	
The slaves for our system communicate with the master over a shared bus reducing the delay caused by the

daisy chaining of boards in the PNOscan system. Bus sharing adds an additional complication of interference on the
bus; however, a slave select bus, shared between all slaves and asserted by the master device, operating in round
robin, identifies which slave has bus write permissions. Each slave receives data representing velocity (7-bits) and
corresponding note number (number of bits dependent on implementation) from the PNOscan optics subsystem.
Slaves store information in a buffer queue which outputs data to the shared bus upon receiving write permission.
Figure	 6 above shows the corresponding system diagram.

Page	 7	 of	 11	
	 	

Protocol	
This system uses an asynchronous protocol between multiple slaves and masters implementable by two Finite

State Machines (FSMs), one each for slave and master. The master asserts a slave select (SS) signals, identifying
which slave has write privileges, and an acknowledge signal (ACK) allowing for the asynchronous nature of the
protocol. Each slave asserts a control signal (CTRL), corresponding to 4 different message types (note-on,
note-off, velocity, no-data), and a data signal (DATA) which holds the data associated with the current
control signal.

Master	 FSM	
The master constantly asserts a signal on the SS bus corresponding to a specific slave. After this signal is

asserted, if CTRL has changed during a predetermined, implementation-specific time interval, the master knows it
has received a message. If the CTRL signal has remained in the no-data state throughout this interval, the master
changes its SS signal to specify another slave and repeats this process.

Two CTRL signal transitions are possible during this time interval corresponding to the assertion of a note-on
or note-off message. Due to the reliability of an asynchronous protocol, the master must toggle the ACK line to
acknowledge a message was received. If the CTRL line is in a note-off state, the master waits for the CTRL line
to return to a no-data state, changes its’ SS signal and returns to the start of the FSM. If the CTRL line is in a
note-on state, the next message is guaranteed to be a velocity message. The master waits for CTRL to change to
the velocity state, and toggles its ACK signal. The master then proceeds to wait for the no data CTRL signal,
changes its SS when the change is observed, and returns to the beginning of the state diagram. This FSM,
implemented for 4 slaves, is displayed below in Figure	 7 and the corresponding ASM is shown in Figure	 8.

	
Figure	 7:	 Master	 FSM	 for	 4	 slave	 setup	

Page	 8	 of	 11	
	 	

	
Figure	 8:	 Master	 ASM	 for	 Proposed	 System	
	

Slave	 FSM	
The slaves have simpler states, involving less computational power and I/O bandwidth than the master. A

specific slave only asserts data when it receives its respective SS signal; each slave is assigned a unique ID
corresponding to the write enable state of the SS signal. During a select cycle, a slave only sends one message;
either in the form of a note number and velocity, in the case of a note-on message, or solely a note number, for a
note-off message. After sending the note number or velocity the slave waits for the ACK signal to toggle before
asserting the next piece of data. After the full note-on or note-off message has been sent to and
acknowledged by the master, the slave asserts the no-data CTRL signal and data message to allow the next slave
to write proper information. The ASM in Figure	 9 illustrates this process.

Page	 9	 of	 11	
	 	

	
Figure	 9:	 ASM	 for	 Slave	 Device

Implementation	
 Our prototype implements our replacement for the PNOscan Hardware sub-system. For demonstration

purposes, we primarily worked with readily available, off-the-shelf components with which we could efficiently
develop and test. These results can be seen in the Prototype section. Our prototype is limited by the IO and
processing capabilities of the hardware used; however, given more resources, an even greater speedup is possible
and is described in the Error! Reference source not found. section.

Prototype	
Our prototype was implemented using a set of Arduino Uno boards as the devices for the master and slave

boards. The Arduino Uno utilizes the ATmega328 chip by Atmel, Inc. This chip has a maximum operating frequency
of 20 MHz and 23 I/O pins. However, not all of these pins are available through the Arduino board, which forced us to
make certain concessions in our design. In a proprietary design, one could simply use the Atmel chip itself to gain

Page	 10	 of	 11	
	

access to each pin, which would double the speed of communication when there is note information to be
transmitted.

 Below is a list indicating which pins on the Arduino have been used and for which purpose(s).Below, MISO
stands for master input, slave output; MOSI stands for master output, slave input:

• PORT C [5:0] (Analog pins 5:0) – Optical input on the slave only
• PORT B [7:0] (Digital pins 13:8) – DATA: Note number/velocity data (MISO)
• PORT D [7:6] (Digital pins 7:6) – CTRL: [Velocity or note number]:[note on or off] (MISO)
• PORT D [5] (Digital pin 5) – ACK: Acknowledgement bit (MOSI)
• PORT D [1:0] (Digital pins 1:0) – SS: Slave select up to 4 slaves (MOSI)

The pin mappings above allow note number and velocity to assume a value between 0 and 255, corresponding

to the 8-bit width of PORT B. Our prototype also uses up to 6 bits to specify a note number; however, due to I/O
limitations of the board used, only 6 distinct inputs are available directly into the slave device, limiting the throughput
of input to the slave devices. As limited by the bit-width of the SS bus, we have implemented the system using up to
4 slaves. Additionally, the final product outputs MIDI-over-USB; however, the Arduino Uno board communicates to its
USB module over a slow serial protocol and therefore cannot take advantage of the MIDI-over-USB speeds needed
for this product. For this reason, our prototype does not have MIDI output functionality implemented. Instead it
displays the reduction of latency in transferring data between the hardware boards which - as discussed in the
Research section - is the largest bottleneck in the system.

Figure 10: Lines [0:1] - Slave Select, Line [2] - ACK, Lines [3:4] - Control Signal (message type)

Because our prototype is meant to demonstrate the proposed protocol, our system is setup for 4 slaves;

however, only a single slave (Slave_ID == 1) is enabled to transmit data, the other two slaves’ write cycles are visible
in the SS bus but send no data. When the master polls a specific slave, that slave will send any information it has in
a maximum of 23µs. Note-on messages take this maximum time due to their requirements to send note-on and
velocity. In the case of a note-off message, this only requires 17µs since no velocity data is required. Lastly,
if there is no information to send, the slave requires ~7µs to communicate this. These latencies mean a maximum of
43 note-on MIDI messages per millisecond or an amortized 50 messages per millisecond maximum, computed
through an average note-on/note-off combination.

Page	 11	 of	 11	
	

Conclusions	
Our hardware proposal for the final system removes the constraints imposed by the hardware for our prototype.

Additionally, our proposal removes the serialization of note number and velocity during transmission of a note-on
message by giving note number and velocity their own dedicated busses.

A normal piano has 88 keys (7 octaves from A0 to C8 plus a third), which are monitored by 4 slaves, meaning 2
bits of information. This specification means each slave device monitors 22 keys for messages. The PNOscan optics
from the original system already monitors this number of keys allowing for easy integration into the rest of the
proposed system. This means that each board will generate note numbers between 0-22 which can be conveyed
over 5 bits of data. 22 ports are needed to monitor the input of the 22 keys. The shared velocity bus can be
implemented with a 7-bit bus to convey data between 0-127. The control signal is implemented using 2 bits. ACK is
implemented using 1 bit. This specification requires 39 ports on each slave.

Utilizing a chip, such as the AT32UC3A0128 by Atmel, with a maximum frequency of 66 MHz its increased
number of I/O pins, operating at a faster switching speed, gives us a speedup of 2-3 times that of our prototype. This
gives us a final data transmission rate of approximately 300 MIDI messages per millisecond. This speed is faster
than both the theoretical limit of MIDI-over-USB and the physical capabilities of a pianist.

Bibliography	
	

[
1]	 	

P.	 Lehrman	 and	 T.	 Tully,	 "What	 is	 MIDI?,"	 in	 MIDI	 for	 the	 Professional,	 Music	 Sales	 America,	
1993,	 p.	 255.	
[

2]	 	
G.	 Ashour,	 B.	 Brackenridge,	 O.	 Tirosh,	 M.	 Kent	 and	 G.	 Knapen,	 "Universal	 Serial	 Bus	 Device	 Class	

Definition	 for	 MIDI	 Devices,"	 1999.	
[

3]	 	
Arduino,	 "Reference,"	 26	 November	 2011.	 [Online].	 Available:	

http://arduino.cc/en/Reference/HomePage.	 [Accessed	 January	 2012].	
[

4]	 	
Arduino,	 "PortManipulation,"	 17	 January	 2010.	 [Online].	 Available:	

http://www.arduino.cc/en/Reference/PortManipulation.	 [Accessed	 February	 2012].	
[

5]	 	
Tektronix,	 "Mixed	 Signal	 Oscilloscopes,"	 19	 March	 2012.	 [Online].	 Available:	

http://www.tek.com/datasheet/mixed-‐signal-‐oscilloscopes-‐9.	 [Accessed	 January	 2012].	
[

6]	 	
Atmel	 Corporation,	 "ATmega328,"	 2012.	 [Online].	 Available:	

http://www.atmel.com/devices/atmega328.aspx.	 [Accessed	 March	 2012].	
[

7]	 	
Atmel	 Corporation,	 "AT32UC3A0128,"	 2012.	 [Online].	 Available:	

http://www.atmel.com/devices/at32uc3a0128.aspx.	 [Accessed	 March	 2012].	
[

8]	 	
Arduino,	 "ArduinoBoardUno,"	 20	 February	 2012.	 [Online].	 Available:	

http://arduino.cc/en/Main/ArduinoBoardUno.	 [Accessed	 January	 2012].	
[

9]	 	
Tektronix,	 "AFG3000	 Function	 Generator,"	 2012.	 [Online].	 Available:	

http://www.tek.com/signal-‐generator/afg3000-‐function-‐generator.	 [Accessed	 January	 2012].	
[

10]	 	
QRS	 Music	 Technologies,	 Inc.,	 PNOscan	 II	 User	 Guide,	 Rev.	 1.00	 ed.,	 vol.	 Manual	 #OM79217.	 	

	
	

