
Andrew Jarowenko
Electronic Musical Instrument Design

Professor Paul Lehrman
May 7, 2015

Figure 1

The Sonic Pyramid
(AKA The All-Seeing Eye of Sound)

 The sonic pyramid is a collaborative music performance interface meant to be shared by
three players1. Each player has a side of the pyramid with which to make music and jam with
the other players. The idea for the project came from Mike and Tom and was started as their
project-1. Greg and I joined forces with them and continued work on the pyramid for project-2.

1 Though it can successfully and enjoyably be played by fewer or more players

Design of the Instrument

 Initially, each of the three faces of the pyramid was to contain five push-buttons and two
circular soft-potentiometers. The push-buttons would trigger samples or synthesizer notes, and
the soft-pots would modulate relevant parameters. This was a nice initial concept, but not very
mature or interesting. Five notes don’t allow very much room for creativity in performance.

 When Greg and I joined the team, the stated goal was to increase the variety and
complexity of what could be done with the pyramid. We had a bit of a breakthrough moment
when we realized that we could use the soft-pots to send pitch data and the buttons to control
various parameters. We divided the soft-pots into eight equal regions by bracketing the data we
received from them in Max2. The number eight was chosen because it allowed a full major or
minor scale (or mode), and still left the regions for each note large enough to accurately target
the desired note. Further, we had the idea to add force-sensing resistors (FSRs) beneath the
soft-pots in order to control relevant parameters with pressure while a note is being held down.
This created a very natural feeling way to control parameters such as vibrato and wah or other
filter effects.

 Because the FSRs that we had access to were square and smaller than the soft-pots,
we created a 3D-printed hard interface3 that allowed pressure to be transferred relatively equally
from any part of the soft-pot to the FSR. This interface was designed as a disc with eight circular
holes in it corresponding to the eight note-regions around the face of the soft-pot. These holes
function as a tactile reference when playing, improving ease of performance and preventing
disorientation playing the instrument that could arise from playing notes on a continuous
surface. Beneath this interface we put a layer of soft neoprene foam to allow a natural travel
when pressing the FSR and make it easier to achieve the desired pressure value.

Circuitry and Construction

 The circuitry of the device was all handled on one soldered board. Data from the various
buttons and sensors on the instrument was fed into an Arduino Mega unit which sent the data
over USB to the computer. The circuitry as a whole was relatively simple, using standard circuits
for each component.

 The pyramid itself was made of three identical sheets of laser-cut acrylic, affixed to one
another with angle brackets, and attached to a triangular wood base via hinges on one side and
a magnet on the opposite vertex. The wood base was added to the pyramid when we realized
that there would not be enough space for the wiring and electronics without it. The whole thing
was spray painted with somewhat hideous primary colors because… why not?

2 See Figure 2
3 See Figure 3

Reading and Interpreting the Data

 The data from the sensors was conditioned and interpreted in Max. We got the data to
Max using the Arduino2Max patch provided to us. The FSR and soft-pot data were used to
generate note-on, pitch, velocity, and aftertouch control data using the subpatch shown in
Figure 4. The data from the buttons of each face were fed into a 1x5 matrix which generated a
binary value from 0-31 for each unique combination of buttons being pressed. This was then
converted to a plain integer which could be used to trigger one of 32 different patches which
could do anything from changing the timbre of a sound, to adding various jftypes of polyphony,
changing the scale of the notes in the circles, switching octaves, etc. Unfortunately, there was
not enough time to actually implement this complex feature, so instead for our presentation the
buttons acted independently, rather than in concert with each other, only triggering one sample
or function per button.

Figure 1:

Figure 2:

Figure 3:

Figure 4:

