Paul Vidich

EMID

5/6/09

Big Daddy

This project began with the simple idea of having some sort of x-y coordinate system that could read and track the user’s motion. Our first idea was to use a Wacom tablet that plugs into a computer with a USB cable (usually a drawing or mouse tool for computers) and try to use the track pad position data in Max. Playing only a Wacom tablet didn’t seem like a full enough instrument though, so eventually we decided to try to get more continuous data by tracking an object with a video camera. For this we utilized a program called Jitter, which is a video manipulation software that works directly in Max. Logically our next concern was how to combine the video tracking and the Wacom tracking into something physically playable and musically functional at the same time. For this we chose to make the tablet, or the box we mounted it on, the tracked object in jitter and to have some structure that could hold the tablet as we move it and play on it. We built a large Wooden/PVC frame in which the tablet can be slid around by means of pulleys and simple slide bearings. This frame forms the centerpiece of all of the musical expression in this instrument.

Goals:

Originally our goal was simply to get away from the limitations of button-push note data; because we tried that in the first project and found that it was not as expressive as we wanted. We also all had the desire to try new techniques for retrieving performance data other than using the traditional (for this class) Doepher to MIDI setup. It eventually became a goal to not use MIDI data at all in the control of our instrument. This actually led to realization of the huge number of options that are available for changing parameters without MIDI.

Hardware and Construction

From the beginning we knew that it would be very difficult to create a frame in which our box could slide anywhere in the vertical and horizontal directions. To support the frame we made an ‘I’ structure out of a few short lengths of 2x4 that we screwed together. At the intersection of the short pieces of wood with the long centerpiece we cut a hole for a vertical PVC shaft to slide into. This was a fairly sturdy support for the lower part of the PVC but the upper part would bend slightly so we added a length of PVC at the top of the structure to strengthen it. Along each vertical piece of PVC we put a T connector that was larger than the pipe diameter so that it could slide up and down. These two ‘T’s were connected with yet another piece of PVC that had a very thin strip of wood added to the top and bottom of it. We found a nicely sized box and cut out the shape of the crossbeam PVC and wood strips, such that we could mount the box on the crossbeam and slide it back and forth with ease. This same crossbeam had a counterweight added to it so that it would stay in a single vertical position. Each end of the beam had a tube tied to it and then slung over a pulley at the top of the frame and down to a bag of rocks, measured to counter the crossbeam weight. Using copious amounts of Velcro we fashioned the Wacom tablet to the front of the box. The other side of the box was painted a neon yellow that we thought would be easy for Jitter to color track (later we just velcroed on a strip of green padding because we found that green works better). The frame is put at a distance from the video camera so that its edges match the edges of the video window. With this setup we could slide the box anywhere in its frame and the computer could track its location while also getting information from the location of the pen on the tablet.

One additional thing we decided to add was the ability to track multiple colors. Thus if we introduced a new colored object into the video frame area we would be able to track the locations of both colors at the same time. We had this fully functional but video color tracking is lighting specific, so with a lighting change our other colors were not functional enough to use.

Max/Jitter Programming

Two functions on this instrument seemed like they would be very difficult to program; the data from the Wacom tablet and the Jitter video tracking. As it turned out these were superficially fairly easy to implement. After some searching a Wacom object was found for Max that had almost all of the information that we wanted to pull from the tablet. The x-y position, pen pressure, and pen buttons were already implemented in the object. There are also 4 buttons on the top of the tablet that we wanted to use but that the Wacom object did not have. To solve this we changed the system preferences so that the computer understands the Wacom buttons as the ASCII numbers 28, 29, 49, and 50. This way we could get the button information in as if it were keyboard strokes.

Using the buttons on the pen and the two sides of it we were able to create 5 x-y data sets to work with; pen tip motion with no button press, pen tip motion with bottom button pressed, pen tip and top button, eraser (blunt end) motion with no button, and eraser with top button. For some reason the bottom button didn’t work with the eraser. The three pen tip data sets come with pressure sensitivity from the pen, while the two eraser sets are given a constant value pressure of 32,000 (half of the range). We used this difference of pressure data and button press data to split the information into the 5 different sections corresponding to each of the above settings. If the pressure was found to be 32,000 then it was assumed that this was the eraser end of the pen (the likelihood of it being the pen tip side is 1 in 64,000) and all the data goes only to one of the eraser functions. The x-y position and pen pressure values have extremely high resolution with ranges well into the thousands. Sadly we had to cut the ranges down to only 128 values so that we could use it with note values and controllers. Each of the 5 data sets had slightly different math done to it because of the varied uses we wanted for each.

The pen-tip press with no button press was used to make a simple noteout command. The horizontal was split into 12 discrete values used for chromatic pitches and the vertical was split into 10 values used for octave values. The horizontal values were added to 12 times the vertical value to get the appropriate pitch for the pen location. The pressure was used as the velocity of the note. This gave us a very fun starting point for playing our instrument, it allows the player to slide anywhere in the whole MIDI range very quickly and creates a great whirling sound.

The pen-tip with the bottom button pressed does everything the same as with no button press except that it sends all its information to a subpatch (called ArpPresets) instead of playing a note with noteout. The pitch that it finds, using the above logic, is used as the root note of an arpegiator in the subpatch. The subpatch ArpPresets is a gargantuan piece of code that contains all of the video tracking code and more, it will be described in a moment.

The pen-tip with top button press was mapped to Filter Freq and Resonance for the arpeggiator channel that I will mention in a moment. The pressure capability here was ignored here. The eraser with no button was mapped to MOD wheel and LFO. The eraser with the top button pressed was mapped to volume for all channels in the vertical direction and to the duration of the arpegiator notes in the horizontal direction.

The subpatch ArpPresets performs one function, to create an arpeggiation whose parameters can be altered on the fly. We used an arpegiator object called “dg.arp” that we found online for this purpose. In its most simple functioning “dg.arp” takes in a chord and outputs each of the notes with some delay between them. Using Wacom data and the video tracking data there are five major functions that can be altered; the root note and velocity, the intervals of the arpegiator, the order that the intervals are played, the tempo, and the duration. Root note, velocity (already altered to fit in the 128 range), and duration come from the main patch but all of the other parameters are created in ArpPresets.

The order in which the intervals are played is controlled with one of the buttons on the tablet. Pressing the button toggles between 5 different preset ways of playing intervals; up, down, up/down, rotate (top and bottom notes are played twice), and random.

The tempo and intervals and controlled with the information from the video tracking. The color tracking code spits out a maximum and minimum value that the object falls in for both x and y axis. For simplicity we took the average of these values to give one x and one y value. Again more mathematical operators were used to get the ranges we desired for x and y data. The x axis was set to range from 0 to 500, this was then sent to control the tempo. The y axis was set to range from 1 to 8, which was used to pick which interval preset we wanted to use. To choose the 8 presets we simply played around on a piano until we found some interesting intervals, we used major, minor, blues, and then 5 nondescript ones. Using a gate object we could switch between which interval sets we wanted based on the y position of our box.

Reason Sound Creation:

The reason file was fairly simple we just had 2 NN19’s and a Subtractor patch. The simple note creation from the pen with not button was sent to a grand piano NN19 patch. The arpegiator notes were sent to a rumbly dark, but not too heavy, Subtractor patch. We used a subtractor here because the controllers all sounded much better (filter freq, resonance, Mod and LFO). We also had a really cool tempura NN19 patch, that sounded almost like a sitar. This was for the notes that were created by moving a different colored object around, but as stated earlier this was not always working so we disabled it.

Problems:

Our biggest problem by far was how late we got started on the Max programming. For some reason everyone had a slightly skewed vision of what this project would be and so instead of beginning the software right away we waiting for the hardware portion to be almost finalized. Looking back it was totally unnecessary to wait but because we had different vision we didn’t know how to start programming without defining a very clear vision that may have conflicted with the other group members ideas.

Surprisingly the Wacom tablet and video tracking took the least amount of time in Max. There were a few functions that held us up for hours on end. One was a way of clearing the old arpegiator notes when a new root note is hit. We could not figure out any logical way to do this so instead we used on of the Wacom tablet buttons to flush the arpegiator for us. The same problem arose when changing presets with the vertical position of the box and we had no choice in the end but to use the same solution of flushing all the notes and having a moment of silence before a new present.

The jitter color recognition was also another large problem. In order to ignore all but one color on screen the color finding bounds for that color need to be quite tight. This creates a dilemma though because if lighting/shading or distance change appreciably then the colors end up outside of the search range. A solution to this that I don’t know how to implement would be to capture the background without the object in it and then only follow the difference. This means that the player would either have to wear all black or not move.

Future changes:

It would have been really great to get the other color trackers producing sound. This is something that is extremely easily implemented and just requires finding a more precise bounding for the other colors.

A more fluidly sliding box would also be very helpful.

Lastly getting the arpegiator to automatically flush and then switch the preset intervals when the box is moved would be a great improvement. It would sound much better and more fluid this way.
