Erik Formella
5/25/09
Final Writeup

Kitten Bass
Overview
We started out with two ideas for our project. I wanted to create a touchpad interface and Mike wanted to make a guitar controller that used real strings so the feel was more realistic. We decided to try to create a MIDI guitar with real strings that interact with the frets to tell Max note numbers and an XY touchpad on the body to control synthesis parameters.

The Kitten Bass works well with fat and deep monophonic sounds. Due to inherent quirks in the way the data comes from the Doepfer box, one direction on the XY pad always has to control volume. This somewhat limits the synthesis options but makes the pad a little more interesting.

Materials

· 1 old bass (w/ strap!)

· 4 bass g strings

· 2 sq. ft. of ¼’’ foam

· 1 spool of conducting thread

· 1 sq. ft. of thing cotton fabric

· 3 sq. ft. of clear acrylic

· a few small pieces of prototyping PCB

· Copious amounts of wire, solder, and electrical tape

· Plenty of fixed resistors, many should be the same value

Construction

After hours of brainstorming and prototyping, we figured out the easiest ways to build the string and touchpad sensors.

Strings:

The fret board of a guitar is basically a large matrix of button contacts. On a real guitar, the contacts send more than just binary data because the notes can be bent, but trying to accommodate that type of control was way out of the scope of this project. As a simple matrix, each note has coordinates that can be written as (string, fret). To get this data from the bass while taking up minimal ports of the Doepfer box we soldered wires to each fret and connected them to continuous inputs on the Doepfer box. We then set up a simple circuit of a series of five equal resistors. In between each pair of resistors we attached a wire that connected to a string. This had the effect of sending different voltages down each string so when contact is made the continuous inputs read a different value for each string.

To make sure that frets above and below the active ones were not closed accidentally, we raised the action of the bridge and created a thicker nut for the neck. This was not quite enough so we also bent the neck into a slight concave shape so that the strings were even higher off the fret board. This made the feel of the strings a little funky but worked very well. (Also, to make room for the touchpad the bridge was moved to the bottom of the neck).

The frets had some noise so we put a shunt to the ground on the end. This eliminated all the problematic noise.

Touchpad:

To determine the position of the performer’s finger(s) on the pad, I created a 5x5 grid of X’s made from conductive thread on a piece of ¼’’ foam. Each one of these X’s was a terminal for a digital input on the Doepfer box. On another piece of foam the same size, I created a simple web of conductive thread. All the thread on this sheet was one piece and supplied with +5V from the Doepfer box. Due to the nature of the sewing, the contacts were slightly recessed into the foam so that when the two pieces were placed together no contacts were closed unless you compressed the foam.

These two layers were sandwiched in an acrylic frame that was mounted on the body of the guitar. The grid of contacts was on the bottom and the +5V on the top. Covering the foam on the touchable side I put a sheet of thin cotton so the player’s fingers could slide more easily.

[image: image1.jpg]

Max

[image: image2.png]ATE

Pl

vaversge [7T xaverage T
ERER e

cra i G EXamEATAN | CiaEs | CITALE)

FERTT

The Max patch the interfaces the hardware to Reason has basically two parts. The web on the left in the picture above takes in the data from the frets and makes ordered pairs out of the controller value and the controller number (in that order). This is perfect because the controller value corresponds to the string so the controller number is just routed based on the string number to go to a [noteout]. A simple velocity of 127 is appended right before the [noteout] of course. This setup has the unfortunate consequence of not producing any note-off messages. This does not really matter though because no sound will be produced until the performer turns up the volume with the touchpad.

The right side of the patch in the photo above is the logic that determines the average XY position of the touches to the pad. The patcher above the grid converts the note on and note off messages to 1 or 0 messages for each contact. The grid is made of toggle switches just to provide visual feedback for error checking. Since multiple contacts can be made within the pad at once, the long patcher below the grid averages the X and Y coordinates of the buttons pressed. A partial diagram of the averaging logic is shown below:

[image: image3.png]E cnn e A e VA can WA e n P e n WY e D o O

) [7 = 1 & & & B e
=l B)))))))

o Tl 33 3 s i et s i

TRk

et

e Er TR A TR e | [W A e T e | [ST T e ety

ORI

fit

TR
TR

Recreation

If I were ever to do this project again, I would spend more time doing the logic in Max so I could get note off messages. It is just very hard because unlike button contacts that send a simple note off when they are opened, the strings send a stream of zeros when no contact is made. If I merely told Max to send a note off to reason when the frets have no string data coming, note off messages would flood reason and no sound would come of the playing.

Also, to reduce the wiring of the touchpad I would love to get a dedicated microcontroller that scans a button matrix. This way to pad could also have more resolution as well.

All in all, we accomplished our goal. The string setup works great. The string data is VERY stable, and therefore reliable. The button pad is a little imprecise but it could be made better with perhaps a sewing machine instead of being done by hand.
