The Schwinnaphone

A Musical Bicycle

By Jeff Volinski with Mike Caselli

[image: image7..pict]
Introduction

Our goal for the Schwinnaphone project was simple; turn a bicycle into an electronic musical instrument. We knew that we could employ a number of different types of electronic sensors, hook them up to a Doepfer box, and then use Max and Reason to process the data, but we were unsure of how to utilize them in an interesting manner. Luckily, the bicycle provided us with a number of ways to potentially control music.

Those who are familiar with multi-gear bicycles know that there are a number of mechanisms present in its design. A bicyclist can slow the speed of the bike by squeezing brake handles that are located on the handlebars. The front and rear derailers can be activated using levers that are also located on the handlebars. Other aspects of the bicycle that could be potentially used electronically include the rotational characteristics of the gear-driven rear wheel, the foot pedals, and the rotational properties of the handlebars and front wheel.

We decided early on that we would like the Schwinnaphone to play a piece of music at a tempo that is directly related to the speed at which the driver is traveling. We decided that the most efficient method to achieve this goal would be to measure the rotational velocity of the rear wheel, and then use that information to step through a recorded sequence. Other electronic controllers could then be hooked up to the brakes and gear shifters of the bicycle to provide control over the timbre of the music being played back. The finished Schwinnaphone is the assemblage of these electronic circuits, an old bicycle (thanks Mrs. Lehrman), and the Max and Reason patches described below.

Hardware

[image: image1.wmf]
The bicycle is outfitted with three different types of sensors, each at a different location. The key sensor on the Schwinnaphone is a reed sensor, located on the frame next to the rear wheel (under the yellow tape, in the picture to the right). This sensor detects the presence of magnets, which are located on the spokes of the rear wheel and pass within millimeters of the sensor as the wheel rotates. The reed sensor data sends an “on” signal to Max as each magnet passes, and reverts back to an “off” signal once the magnet is out of range. This data is used in Max to drive the sequencers through the strings of note data.

The Schwinnaphone also uses a force-sensing resistor that is mounted on the front braking mechanism (pictured below). This resistor sends a voltage signal to the Doepfer box that is proportional to the force created as the user squeezes the brake handle. This data is then converted into a number between 0 and 127 that is used to control the pitch bend of the lead guitar track (in such a way as to replicate a whammy bar). We experimented with having the brakes control other aspects of the music, such as the LFO amount, but many of these parameters would cause Max to crash unexpectedly.

[image: image2..pict]
The Schwinnaphone features a push button switch that is located on the large gear derailer. This sensor also feeds Max with on-off data each time it is triggered, which is used to signal a switch within the program that halves the tempo by recognizing only one out of every two reed switch firings.

Other pieces of hardware that we used throughout the course of the project are a breadboard for the electronic wiring and a rear wheel bicycle trainer to mount the Schwinnaphone on for testing and demonstration purposes.

Software

Max Patch

The Max programming turned out to be a learning experience that was more difficult than expected. Our goal was to have the reed sensor control a sequencer in such a way that it stepped through a sequence of numbers one number at a time each time that the sensor fired. The sequence of numbers would contain pitch data, which could be sent to “noteout” objects to create the song.

[image: image3..pict]
There were two main challenges that we encountered when trying to employ this idea. First, there was no existing object in Max that would allow you to “step through” a sequence of numbers. I had some experience working with the “seq” function (it was used in my first EMID project, “The Song Destroyer”), but it did not provide the level of control that was needed for the Schwinnaphone. Professor Lehrman then recommended that we search the internet for information on how to write such a program. We soon found out that there is a vibrant community of Max users out there who are more than willing to share their knowledge of the program. After a short search, I stumbled upon Karlheinz Essl’s RTC Library
, a collection of Max patches that had been created by Mr. Essl that he was sharing publicly. One of these patches, “sequence”, was exactly what we were looking for.

The second challenge involved composing an entire song using MIDI note numbers in a Max message box. The Schwinnaphone program plays back “Born to Be Wild”, by Steppenwolf, on five different tracks (bass guitar, lead, kick drum, snare drum, and hihat). Each of these tracks is a collection of 448 numbers arranged in lines of sixteen (each line of sixteen represents two measures of 8-beats in the song). It turns out that the message boxes in Max have a capacity of 192 two-digit numbers, so each of the tracks had to be broken down into four separate message boxes. The bass track and the lead track require two sets of sequences each; one to supply the note-on values and the other to supply the note-off values. The logic used to play back these sequences is described below.

[image: image4..pict]
The heart and soul of the Schwinnaphone Max patch is the sequencer section, which employs seven of the aforementioned “sequence” functions. The program uses two sequence functions (pictured above) for both the bass and the lead sequences; one to signal a note on, and the other to signal a note off right before the next note is played. Each of the three drum tracks require only note-on sequences because the Redrum module in Reason does not require note-off’s (the drum sounds are so concise). The “select -1” function is used as a method to play rests in the song; each time the sequence spits out a value of -1, nothing gets passed on to the noteout object.

Since each sequence is actually a collection of four different message boxes, a separate section of logic had to be written to switch between sections at the exact moment (right). The four if-statements are each connected to a counter that tallies the number of “bangs” created by the reed sensor. When the counter reaches the number of the last value in the first box, the if-statement fires a bang to signal the sequence function to begin stepping through the second box. This procedure is followed to the end (all 448 numbers in four message boxes) and then a bang is set to reset the counter to begin counting from zero once again.

[image: image5..pict]
The last significant piece of programming is the section of logic that controls the velocity of the notes being played. We thought that it would be interesting if we the speed of the rear wheel could, in some way, control the velocity of the notes. This logic (pictured right) does exactly that. It utilizes a “timer” function to measure the time between two bangs of the reed switch, and sends that number to a series of if-statements. These statements assign lower times higher velocities and longer times lower velocities. The velocity values are then sent directly to the noteout objects each time that they change.

The rest of the programming provides some bells and whistles to the Schwinnaphone, such as an automatic reset after 3 seconds of inactivity (which is accompanied by an awesome, end-of-song guitar and drum crash), the logic for the tempo-halving switch, and the programming that accompanies the pressure sensors that control the pitch bend of the lead track.

Reason Patch

The Reason patch is very straightforward. It uses three separate components each working on their own channel; a Subtractor module or an NN19 module for the lead sequence, an NN19 module for the bass, and a Redrum module for the three drum tracks. The Redrum module loads 10 separate drum sounds, each of which can be signaled by a different note-on number on that channel (for example, the kick drum is note 36, the snare is 37, and the hihat is 43). In the Max patch, the two bass sequences are sent to channel 1, the two lead sequences are sent to channel 2, and the three drum sequences are sent on channel 3.

The only knob in the Reason patch that is controlled via the Max patch is the pitch bend on the lead track, which is hooked up to the pressure sensor on the brake.

Responsibilities

Similar to my last project, I was assigned with the task of devising the Max and Reason patches that would run the hardware. While Mike spent most of his time attaching the sensors to the bicycle and making them compatible with the Doepfer box, I spent the majority of my time in front of the computer, wrestling with Max.

After we formulated a way to step through a sequence of numbers, it was my job to “compose” a song entirely using MIDI numbers. Needless to say, this was a dry and tedious task. I found that this could most easily be accomplished by breaking up the song (“Born to Be Wild”) into sections of 16 beats, so each of the five tracks could be easily coordinated with one another. I also had to figure out the most efficient way to send

[image: image6..pict]note-off data for the bass and lead tracks. I found that the correct note-off sequence took on the same shape as the note-on sequence, but with the numbers shifted to the right. While more tracks of “Born to Be Wild” or another entire song could have been added to

the program, it would have been such a time consuming task that the rest of the program would have suffered. I decided to stop “composing” after seven sets of MIDI data so that the rest of the logic would be as robust as possible. The note-on and note-off sequences for the lead track are pictured above as an example.

I also spent some of my time searching the internet for information about Max programming. I found this to be a very valuable experience because I learned that there is a wealth of information in various user-groups on the net. In addition to finding the “sequence” function that was put to use in our program, I discovered a number of other useful objects that would have simplified other Max programming challenge that I have faced in the past.

Conclusions

While the Schwinnaphone project was a successful venture into the world of electronic musical instrument design, it was a worthy challenge. If I’ve learned one thing about programming and electronics, it’s that something is bound to go wrong. Figuring out how to make our resistive sensors into sources for the Doepfer box was a very difficult task, one in which the consultation of an electrical engineering professor was required. Composing a five-track version of “Born to Be Wild” using only MIDI numbers was an incredibly tedious task that was made even more difficult because of the intricacies of Max’s message boxes.

If we were to construct the second generation Schwinnaphone, I would make a few changes. First, I would increase the reed sensor’s sensitivity. At high speeds, the magnets will pass the sensor so quickly that it will not register a response, leading to a “studdering” playback of “Born to Be Wild”. I would also spend the time to create more songs that could be toggled using a mechanism such as the rear derailer. I would also like to examine alternative methods of sequence playback, because it appears that Max sometimes becomes overloaded in our current patch when all seven sequences are running.

While time consuming, I feel that this project was extremely worthwhile. I can definitely say that I learned more about Max, and that I discovered a large support community for the program online. Electronic circuits have never been my forte, but I have to admit that they make more sense to me now than they did before the project. Long live the Schwinnaphone!

� Karlheinz Essl’s RTC-lib, � HYPERLINK "http://www.essl.at/works/rtc.html" ��http://www.essl.at/works/rtc.html�, 2004

