William Matelski

Electronic Musical Instrument Design

Final Project

5/13/05

The “Nintendarcade” Controller

General Concept

The general concept our group came up with was to create a simple, expandable, modular, and self-contained midi controller to be used in a live DJ performance setting (mixing and matching loops on the fly, with some control over various effects). For a little bit of a challenge, we would focus our creation around the use and modification of an off the shelf USB game controller as a sensor interface for Max/Msp, which would make the project not only cheap, but portable.

Since we were using a modified game controller, we thought it would be nice to keep with the game theme and decided to build what is essentially an arcade control surface customized for the live manipulation of a mix. Using a large joystick, buttons, and sliders would also provide for an extremely confortable, tactile, and somewhat intuitive controller.

To implement our goal of having instant and robust control over sound loops, it seemed natural to not try to reinvent the wheel and use an already proven application, Abelton Live 4. To further focus our intent, we decided to use Live to control an awesome piece of hardware and my favorite new toy, MidiNes. MidiNes is an actual Nintendo cartridge which allows for complete midi control of the console's sound synthesis. Using MidiNes in conjunction with Live, the custom control surface, and a large amount of Max/Msp programing would help create what is ultimately simple, but largely expandable. Allowing a maximum control over 100 midi parameters.

Our goal was to basically map the large joystick to dynamically change the function of the rest of the controllers on the surface. We would create 2 switchable modes of operation for the interface, one dedcated to mixing (“mix mode”), and the other to live midi note generation like a keyboard (“improv” mode).

Hardware

The main hardware we used for the construction of this controller, was a 8-way joystick, 10 momentary arcade pushbuttons, 2 slide potentiometers, and a Sony Playstation controller with a Radio Shack USB converter (to keep cost down, at about $5 a controller, in case of any hacking mishaps). To house the components we built a 19 by 7'' enclosure, about the size of a double rackspace.

To connect all of the components to the controller, was fairly straightforward. The controller contained a ribbon cable with 16 wires (one for each button, and a common ground). To wire the large joystick and pushbutton microswitches to the controller was a matter of soldering a wire on this ribbon cable to the common ground. While our group intended to make use of 2 slide pots on the control surface, we found that it was a little too cumbersome for the scope of the project, so omitted it due to technical and time constraints. Instead we would make use of one of the 2 small analog joysticks contained on the Playstation controller for control over continuous midi parameters.

[image: image3.jpg]E=

b FEEEE

BEH

e paling erva i milsaconds |

o the davics once

i varboce ade o or o1

ibl-chl o force faadbac) e

[

P R R .

e

oo,

Uyl

]

s

| =)

[T <72 ther ot e s o1

[& <72 ther et D e s 1]

Software

As stated before, we made use of Max/Msp for data processing and Abelton Live for routed to MidiNes for sound generation. While our controller is essentially only 10 buttons, an 8-way joystick, and small analog joystick, most of it's flexibility and robustness would come in the Max programming talored for Live.

Ableton Live's interface consists of a series of columns containing individual loop or sound cells (see figure). To focus on sound creation with MidiNes, which utilizes the Nintendo's 5 channels of sound generation (2 square and a triangle wave, a noise channel, and a sample channel), we would create 5 columns of 8 parts (to correspond to the 8 trigger buttons on the control surface).

[image: image1.png]Toggle Octave,
Buton Buttan

Anelog

Big doystick (8-ay Swich
(Bwiay doystick

IR

Loop Trggerote-0n Buttons

With these parameters in mind, in “mix mode” we would program the large joystick to select witch column a sound loop would be selected from (organized by channel). Then each of the 8 trigger buttons would toggle one of the 8 loops of that channel. While on “improv mode” the buttons would then be dynamically assigned to whole notes and be playable like a key board. The “improv mode” large joystick would the bend the whole note up a half step, to obtain the full range. These two modes would be toggled by the 2 function buttons on the control surface.

To program these functions, we would make use of the “joystick” Max object to interpret the USB controller data. From this object each of the buttons/analog joysticks would be routed to separate bangs and continuous values. From there they would be mapped to ether controller or note numbers. Depending on the mode and position of the 8-way joystick, each of these controller or note numbers would be dynamically reassigned . All in all the programing would allow on the fly reassigning and control over a 100 functions.

[image: image2.jpg][7a» 1130.00[4 4]0]oe] ext | 2] o 3_4[>lm]efov [Sfnono o]]

[Bless 1| [1>[itoon1| [otoess
[Toharos: | [>[osss 2] [l toop 2| [>BLessa]
[Blorr | [Blessss (Bl ioop3|[>]
ez | [b] (> e [[o Loop «

D] D] D] =

[Blors_|[Blossss (Bl toop][I0 coos |
D] D]

[Earmony] -] =
o m
CEX DK R 0

WID1 From [WIDIFrom | WIDI From | WID From | WiDI From
s _o]nsl[piins_o]jpins [pims

[Granne] 1 AT Ghanme] [AT Granne] 1 A1 Cranne]
Wonor | wontor | onitor | wonor
[}
oI To

[|
o)

@ vetocity ®8)

v OuH

Drop MIDI Effcts, Audlo Effcts or Instruments Horo

Sound Generation

As mentioned before, we solely used the Nintendo sound chip for sound generation. As our musical material for loops in Live, we used a mix of classic Nintendo songs/sound fx, with our own more contemporary loops (due to the Nintendo's simplicty in sound synthesis, we created mostly basic 4/4 melody, bass, and drum loops). Essentially this resulting in sound like a kind of live remix of Nintendo songs.

For effects we chose to make use of Live's built in random midi note generator, and mapped the small analog joystick to control the amount of “random chance” for each channel individually.

Conclusion

Given the limitation of the hardware used, I feel like we created a very versatile, usable, and ultimately fun controller. While we did encounter some issues, like the Max patch running my CPU at a constant 80% and the USB controller having about 10 ms of input latency, it went pretty smoothly. While the “hacking” of the USB controller and manipulation of it's data in Max was a little clunky, we found that it is a really easy and cheap (costing only $5-20) method of getting data into Max. This concept would be an ideal way of creating projects consisting of minimal programming or for instrument prototyping. All in all I think everyone int the group put in there fair share to make a really great controller out of basically 16 buttons and 4 axis.

