
Annika Schaad

The Ferrous Wheel

Design Goals

The goal of this project was to make the intuitive act of drawing into a musical instrument. We

took inspiration from the mechanism of the Willy Wooly children’s toy (below). The toy is made

from inexpensive materials; iron filings are contained within a plastic enclosure, moved by the

user with a magnetic wand. The “hairy” appearance of iron filings within a magnetic field is used

by positioning the drawing space in front of a picture of a man’s face. When brainstorming for

this project, we discussed ways of turning a painting

motion into control for a MIDI instrument. We landed on

this sort of “drawing” because it is easily reset, and clear

targets can be laid out below the drawing surface.

The instrument is composed of a network of

photoresistors, laid out in the pattern of the circle of fifths,

below a clear acrylic enclosure containing magnetic

filings. The filings are moved using one of six magnetic

wands. One of three sizes of magnets is attached to each

wand. Half of the wands have the same polarity, such that

there are two wands per size of magnet, with the magnets

in opposing orientations. This allows the user to

experiment with how much of the filings they are moving at once, as well as interactions

between the magnetic fields of different wands. Either a note, chord, or sample, depending on the

mode of the instrument, is played when a particular photoresistor is covered. The pitch of the

note played is determined by the position of the covered sensor in the circle of fifths. The use of

magnets, iron filings and photoresistors provide possibilities for future expansion of the

instrument using the analog nature of the photoresistor or more direct measurement of the

magnetic field.



Construction

As a whole, this instrument was designed for easy assembly and machinability. It was designed

to be assembled from cut pieces of flat material that

could then be stacked for a robust,

three-dimensional object. This instrument has two

major components in its design. The inner section of

the instrument is composed of the sensor plate and

the housing for magnetic filings, as well as a spacer.

The outer section is a case, which supports the inner

section while also giving the user a larger interface

and housing the arduino that collects the sensor data.

The original design for the instrument is pictured to

the right.

The inner section was machined using a laser cutter. The wooden sensor plate was engraved with

a decorative border and 25 holes for the 25 photoresistors, arranged in two concentric circles of 8

with an additional sensor in the center. The

photoresistors are attached to the bottom of this plate

with the head of the photoresistor flush with the top of

the plate, and secured in place with tape. There are

three stacked spacer rings of ⅛ inch birch plywood

between this plate and the acrylic layer above. The

acrylic plate has a spacer ring between two solid layers

of clear ⅛ inch acrylic. The three layers of acrylic are

sealed with two-part epoxy, with iron filings between

them. The wood pieces are attached to each other, and

the acrylic pieces are attached to each other, but within

the case the acrylic is resting atop the wooden piece for easy troubleshooting.



The outermost case was cut from medium-density fiberboard (MDF) using the Shopbot CNC

router in Bray PALLS machine shop. The case could have been cut using the X-carve router in

the EMID Lab as well, but I am more familiar with the Shopbot. Five rings were cut from 0.75”

thick MDF, then were glued in place. The outer case was made assuming the sensors would take

up approximately two inches of vertical space; towards the end of our project, it became clear

that we would need more clearance. I fashioned four supports from ⅛ inch plywood, secured

them to the bottom half of the case with hot glue, and added a thin paperboard cover to keep

everything contained (above). Originally, the two halves of the outermost case were attached via

wooden pegs, which can be seen attached to the bottom half of the case, and slotted into holes in

the top half.

The magnetic wands were designed using Adobe

Illustrator and Onshape. They were printed from

PLA using Bray’s Ender 3 3D printers. I fashioned a

stand for them using scrap MDF from my earlier cuts

as well as scrap foam from Bray. The magnets were

attached using small pieces of foam as spacers and

two-part epoxy. The foam is attached to the outer

ring with hot glue. Three sizes of magnets were

selected, and two of each size were attached to

wands with opposing polarity.



Circuitry and Sensors

The circuitry for this project was overseen by Joe.

This instrument contains 25 photoresistors as the

primary sensors. Other than mode switching within

the MAX patch, the user has no other direct controls

of the instrument during normal operation. Since we

want analog information from these sensors, and the

Arduino Mega has only 16 analog pins, the

photoresistors are wired through a multiplexer rather

than sending information directly to the board. Each

multiplexer chip can read on up to eight pins. The

multiplexer chips can rapidly cycle through their

pins so that the Arduino receives data from all 24

photoresistors, plus one that is plugged in directly, in

a time frame conducive to the user making changes

with the filings. To the right is a view of a

protoboard that holds one multiplexer, eight 1.6 kΩ

resistors, and the jumper wires for the photoresistors and connections to the Arduino Mega.

Three of these circuits are contained within the instrument.

Arduino

The arduino script for this project was overseen by Joe, and was built off the script we used for

our midterm project. The Arduino code for this project has four main components. First, it cycles

through the pins on the multiplexers. Second, it transforms the analog values from the

multiplexer to a digital high or low signal. If the sensor value is above our threshold of 750

(approximately the halfway point of our photoresistors’ range) then it is set to our “high” of

1023. This was done because the range of values we were getting for the sensors was difficult to

work with, so we decided to switch to making them on or off. Third, the code sends an on and off

signal to our Max patch depending on whether the sensor is reading high or low. It does this by

writing the sensor values, as well as an on/off command, to the serial monitor. This serial



monitor is then read into Max. The lines of code for one sensor value to be sent are pasted below,

and the code in its entirety is attached as appendix A.

int tolerance = 750;

if (sensor4 > tolerance) {

sensor4 = 1023;

if (sensor4 < 1023 && sensor4_on != 1) {

sensor4_on = 1;

}

if (sensor4 == 1023 && sensor4_on == 1) {

sensor4_on = 2;

}

Serial.print(sensor4);

Serial.print(" ");

Serial.print(sensor4_on);

Serial.print(" ");

Max Patch

The MAX Patch for this project was overseen by Joe, and was built off the patch we used for our

midterm project. First, the serial monitor is read in from Arduino and unpacked. Then, the sensor

value and the on/off signal are sent as MIDI control signals to Reason. Each sensor corresponds

to a different note, and the mode is changed by changing the octave. Each mode is two octaves

wide. The note assignments can be found in appendix B.



Reason

Jordan headed up the reason patch for this project. She created the three modes of note, chord,

and sampler by recording all of the played sounds into different octaves of an NN-19 sampler

module. This allowed the MAX patch to be simplified, as changing modes is as straightforward

as changing octaves. The Reason rack is pictured below. We decided to lay out the instrument’s

sensors in the circle of fifths in hopes that the music layed would be less dissonant than if the

notes were arranged in ascending order of a scale, since it is difficult to trigger only one sensor at

a time in this instrument.



Future Work

In line with our original vision, it would be nice in the future to more fully utilize the analog

readings from the photoresistors. The timbre of the played sound could be affected by how

completely the sensor is covered by means of a filter envelope. The volume of the played sounds

could be determined by the coverage of the centermost photoresistor. Additionally, it would be

beneficial to implement a way of switching modes of the instrument from the body of the

instrument itself– either by cycling through with a button, multiple buttons, or a 3-position

switch. This would allow the user to concentrate on playing the instrument rather than going

between the software and the instrument.



Appendices

Appendix A: Arduino Code.

void setup() {
Serial.begin(9600);

pinMode(A1,INPUT);
pinMode(A2,INPUT);
pinMode(A3,INPUT);
pinMode(A4,INPUT);

//mux1
pinMode(2,OUTPUT);
pinMode(3,OUTPUT);
pinMode(4,OUTPUT);

//mux2
pinMode(5,OUTPUT);
pinMode(6,OUTPUT);
pinMode(7,OUTPUT);

//mux 3
pinMode(8,OUTPUT);
pinMode(9,OUTPUT);
pinMode(10,OUTPUT);

}

int sensor0_on = 0;
int sensor1_on = 0;
int sensor2_on = 0;
int sensor3_on = 0;
int sensor4_on = 0;
int sensor5_on = 0;
int sensor6_on = 0;
int sensor7_on = 0;
int sensor8_on = 0;
int sensor9_on = 0;
int sensor10_on = 0;
int sensor11_on = 0;
int sensor12_on = 0;
int sensor13_on = 0;
int sensor14_on = 0;
int sensor15_on = 0;
int sensor16_on = 0;
int sensor17_on = 0;
int sensor18_on = 0;
int sensor19_on = 0;
int sensor20_on = 0;
int sensor21_on = 0;
int sensor22_on = 0;



int sensor23_on = 0;
int sensor24_on = 0;

void loop() {

int sensor0 = 0;
int sensor1 = 0;
int sensor2 = 0;
int sensor3 = 0;
int sensor4 = 0;
int sensor5 = 0;
int sensor6 = 0;
int sensor7 = 0;

int sensor8 = 0;
int sensor9 = 0;
int sensor10 = 0;
int sensor11 = 0;
int sensor12 = 0;
int sensor13 = 0;
int sensor14 = 0;
int sensor15 = 0;

int sensor16 = 0;
int sensor17 = 0;
int sensor18 = 0;
int sensor19 = 0;
int sensor20 = 0;
int sensor21 = 0;
int sensor22 = 0;
int sensor23 = 0;

int sensor24 = 0;

int tolerance = 750;

int timedelay = 5;

for (int i = 0; i<8; i++) {
if (i == 0) {
digitalWrite(4,LOW);
digitalWrite(3,LOW);
digitalWrite(2,LOW);

digitalWrite(7,LOW);
digitalWrite(6,LOW);
digitalWrite(5,LOW);

digitalWrite(10,LOW);
digitalWrite(9,LOW);
digitalWrite(8,LOW);



delay(timedelay);

sensor0 = analogRead(A1);
sensor8 = analogRead(A2);
sensor16 = analogRead(A3);
}
else if (i == 1) {
digitalWrite(4,LOW);
digitalWrite(3,LOW);
digitalWrite(2,HIGH);

digitalWrite(7,LOW);
digitalWrite(6,LOW);
digitalWrite(5,HIGH);

digitalWrite(10,LOW);
digitalWrite(9,LOW);
digitalWrite(8,HIGH);

delay(timedelay);

sensor1 = analogRead(A1);
sensor9 = analogRead(A2);
sensor17 = analogRead(A3);
}
else if (i == 2) {
digitalWrite(4,LOW);
digitalWrite(3,HIGH);
digitalWrite(2,LOW);

digitalWrite(7,LOW);
digitalWrite(6,HIGH);
digitalWrite(5,LOW);

digitalWrite(10,LOW);
digitalWrite(9,HIGH);
digitalWrite(8,LOW);

delay(timedelay);

sensor2 = analogRead(A1);
sensor10 = analogRead(A2);
sensor18 = analogRead(A3);
}
else if (i == 3) {
digitalWrite(4,LOW);
digitalWrite(3,HIGH);
digitalWrite(2,HIGH);

digitalWrite(7,LOW);
digitalWrite(6,HIGH);
digitalWrite(5,HIGH);

digitalWrite(10,LOW);



digitalWrite(9,HIGH);
digitalWrite(8,HIGH);

delay(timedelay);

sensor3 = analogRead(A1);
sensor11 = analogRead(A2);
sensor19 = analogRead(A3);
}
else if (i == 4) {
digitalWrite(4,HIGH);
digitalWrite(3,LOW);
digitalWrite(2,LOW);

digitalWrite(7,HIGH);
digitalWrite(6,LOW);
digitalWrite(5,LOW);

digitalWrite(10,HIGH);
digitalWrite(9,LOW);
digitalWrite(8,LOW);

delay(timedelay);

sensor4 = analogRead(A1);
sensor12 = analogRead(A2);
sensor20 = analogRead(A3);
}
else if (i == 5) {
digitalWrite(4,HIGH);
digitalWrite(3,LOW);
digitalWrite(2,HIGH);

digitalWrite(7,HIGH);
digitalWrite(6,LOW);
digitalWrite(5,HIGH);

digitalWrite(10,HIGH);
digitalWrite(9,LOW);
digitalWrite(8,HIGH);

delay(timedelay);

sensor5 = analogRead(A1);
sensor13 = analogRead(A2);
sensor21 = analogRead(A3);
}
else if (i == 6) {
digitalWrite(4,HIGH);
digitalWrite(3,HIGH);
digitalWrite(2,LOW);

digitalWrite(7,HIGH);
digitalWrite(6,HIGH);



digitalWrite(5,LOW);

digitalWrite(10,HIGH);
digitalWrite(9,HIGH);
digitalWrite(8,LOW);

delay(timedelay);

sensor6 = analogRead(A1);
sensor14 = analogRead(A2);
sensor22 = analogRead(A3);
}
else {
digitalWrite(4,HIGH);
digitalWrite(3,HIGH);
digitalWrite(2,HIGH);

digitalWrite(7,HIGH);
digitalWrite(6,HIGH);
digitalWrite(5,HIGH);

digitalWrite(10,HIGH);
digitalWrite(9,HIGH);
digitalWrite(8,HIGH);

delay(timedelay);

sensor7 = analogRead(A1);
sensor15 = analogRead(A2);
sensor23 = analogRead(A3);
}
delay(timedelay);

}

sensor24 = analogRead(A4);

if (sensor0 > tolerance) {
sensor0 = 1023;

}
if (sensor1 > tolerance) {

sensor1 = 1023;
}
if (sensor2 > tolerance) {

sensor2 = 1023;
}
if (sensor3 > tolerance) {

sensor3 = 1023;
}
if (sensor4 > tolerance) {

sensor4 = 1023;
}
if (sensor5 > tolerance) {

sensor5 = 1023;
}



if (sensor6 > tolerance) {
sensor6 = 1023;

}
if (sensor7 > tolerance) {

sensor7 = 1023;
}
if (sensor8 > tolerance) {

sensor8 = 1023;
}
if (sensor9 > tolerance) {

sensor9 = 1023;
}
if (sensor10 > tolerance) {

sensor10 = 1023;
}
if (sensor11 > tolerance) {

sensor11 = 1023;
}
if (sensor12 > tolerance) {

sensor12 = 1023;
}
if (sensor13 > tolerance) {

sensor13 = 1023;
}
if (sensor14 > tolerance) {

sensor14 = 1023;
}
if (sensor15 > tolerance) {

sensor15 = 1023;
}
if (sensor16 > tolerance) {

sensor16 = 1023;
}
if (sensor17 > tolerance) {

sensor17 = 1023;
}
if (sensor18 > tolerance) {

sensor18 = 1023;
}
if (sensor19 > tolerance) {

sensor19 = 1023;
}
if (sensor20 > tolerance) {

sensor20 = 1023;
}
if (sensor21 > tolerance) {

sensor21 = 1023;
}
if (sensor22 > tolerance) {

sensor22 = 1023;
}
if (sensor23 > tolerance) {

sensor23 = 1023;
}



if (sensor24 > tolerance) {
sensor24 = 1023;

}

if (sensor0 < 1023 && sensor0_on != 1) {
sensor0_on = 1;

}
if (sensor0 == 1023 && sensor0_on == 1) {

sensor0_on = 2;
}
if (sensor1 < 1023 && sensor1_on != 1) {

sensor1_on = 1;
}
if (sensor1 == 1023 && sensor1_on == 1) {

sensor1_on = 2;
}
if (sensor2 < 1023 && sensor2_on != 1) {

sensor2_on = 1;
}
if (sensor2 == 1023 && sensor2_on == 1) {

sensor2_on = 2;
}
if (sensor3 < 1023 && sensor3_on != 1) {

sensor3_on = 1;
}
if (sensor3 == 1023 && sensor3_on == 1) {

sensor3_on = 2;
}
if (sensor4 < 1023 && sensor4_on != 1) {

sensor4_on = 1;
}
if (sensor4 == 1023 && sensor4_on == 1) {

sensor4_on = 2;
}
if (sensor5 < 1023 && sensor5_on != 1) {

sensor5_on = 1;
}
if (sensor5 == 1023 && sensor5_on == 1) {

sensor5_on = 2;
}
if (sensor6 < 1023 && sensor6_on != 1) {

sensor6_on = 1;
}
if (sensor6 == 1023 && sensor6_on == 1) {

sensor6_on = 2;
}
if (sensor7 < 1023 && sensor7_on != 1) {

sensor7_on = 1;
}
if (sensor7 == 1023 && sensor7_on == 1) {

sensor7_on = 2;
}
if (sensor8 < 1023 && sensor8_on != 1) {

sensor8_on = 1;



}
if (sensor8 == 1023 && sensor8_on == 1) {

sensor8_on = 2;
}
if (sensor9 < 1023 && sensor9_on != 1) {

sensor9_on = 1;
}
if (sensor9 == 1023 && sensor9_on == 1) {

sensor9_on = 2;
}
if (sensor10 < 1023 && sensor10_on != 1) {

sensor10_on = 1;
}
if (sensor10 == 1023 && sensor10_on == 1) {

sensor10_on = 2;
}
if (sensor11 < 1023 && sensor11_on != 1) {

sensor11_on = 1;
}
if (sensor11 == 1023 && sensor11_on == 1) {

sensor11_on = 2;
}
if (sensor12 < 1023 && sensor12_on != 1) {

sensor12_on = 1;
}
if (sensor12 == 1023 && sensor12_on == 1) {

sensor12_on = 2;
}
if (sensor13 < 1023 && sensor13_on != 1) {

sensor13_on = 1;
}
if (sensor13 == 1023 && sensor13_on == 1) {

sensor13_on = 2;
}
if (sensor14 < 1023 && sensor14_on != 1) {

sensor14_on = 1;
}
if (sensor14 == 1023 && sensor14_on == 1) {

sensor14_on = 2;
}
if (sensor15 < 1023 && sensor15_on != 1) {

sensor15_on = 1;
}
if (sensor15 == 1023 && sensor15_on == 1) {

sensor15_on = 2;
}
if (sensor16 < 1023 && sensor16_on != 1) {

sensor16_on = 1;
}
if (sensor16 == 1023 && sensor16_on == 1) {

sensor16_on = 2;
}
if (sensor17 < 1023 && sensor17_on != 1) {

sensor17_on = 1;



}
if (sensor17 == 1023 && sensor17_on == 1) {

sensor17_on = 2;
}
if (sensor18 < 1023 && sensor18_on != 1) {

sensor18_on = 1;
}
if (sensor18 == 1023 && sensor18_on == 1) {

sensor18_on = 2;
}
if (sensor19 < 1023 && sensor19_on != 1) {

sensor19_on = 1;
}
if (sensor19 == 1023 && sensor19_on == 1) {

sensor19_on = 2;
}
if (sensor20 < 1023 && sensor20_on != 1) {

sensor20_on = 1;
}
if (sensor20 == 1023 && sensor20_on == 1) {

sensor20_on = 2;
}
if (sensor21 < 1023 && sensor21_on != 1) {

sensor21_on = 1;
}
if (sensor21 == 1023 && sensor21_on == 1) {

sensor21_on = 2;
}
if (sensor22 < 1023 && sensor22_on != 1) {

sensor22_on = 1;
}
if (sensor22 == 1023 && sensor22_on == 1) {

sensor22_on = 2;
}
if (sensor23 < 1023 && sensor23_on != 1) {

sensor23_on = 1;
}
if (sensor23 == 1023 && sensor23_on == 1) {

sensor23_on = 2;
}
if (sensor24 < 1023 && sensor24_on != 1) {

sensor24_on = 1;
}
if (sensor24 == 1023 && sensor24_on == 1) {

sensor24_on = 2;
}

Serial.print(sensor0);
Serial.print(" ");
Serial.print(sensor0_on);
Serial.print(" ");
Serial.print(sensor1);
Serial.print(" ");
Serial.print(sensor1_on);



Serial.print(" ");
Serial.print(sensor2);
Serial.print(" ");
Serial.print(sensor2_on);
Serial.print(" ");
Serial.print(sensor3);
Serial.print(" ");
Serial.print(sensor3_on);
Serial.print(" ");
Serial.print(sensor4);
Serial.print(" ");
Serial.print(sensor4_on);
Serial.print(" ");
Serial.print(sensor5);
Serial.print(" ");
Serial.print(sensor5_on);
Serial.print(" ");
Serial.print(sensor6);
Serial.print(" ");
Serial.print(sensor6_on);
Serial.print(" ");
Serial.print(sensor7);
Serial.print(" ");
Serial.print(sensor7_on);
Serial.print(" ");
Serial.print(sensor8);
Serial.print(" ");
Serial.print(sensor8_on);
Serial.print(" ");
Serial.print(sensor9);
Serial.print(" ");
Serial.print(sensor9_on);
Serial.print(" ");
Serial.print(sensor10);
Serial.print(" ");
Serial.print(sensor10_on);
Serial.print(" ");
Serial.print(sensor11);
Serial.print(" ");
Serial.print(sensor11_on);
Serial.print(" ");
Serial.print(sensor12);
Serial.print(" ");
Serial.print(sensor12_on);
Serial.print(" ");
Serial.print(sensor13);
Serial.print(" ");
Serial.print(sensor13_on);
Serial.print(" ");
Serial.print(sensor14);
Serial.print(" ");
Serial.print(sensor14_on);
Serial.print(" ");
Serial.print(sensor15);



Serial.print(" ");
Serial.print(sensor15_on);
Serial.print(" ");
Serial.print(sensor16);
Serial.print(" ");
Serial.print(sensor16_on);
Serial.print(" ");
Serial.print(sensor17);
Serial.print(" ");
Serial.print(sensor17_on);
Serial.print(" ");
Serial.print(sensor18);
Serial.print(" ");
Serial.print(sensor18_on);
Serial.print(" ");
Serial.print(sensor19);
Serial.print(" ");
Serial.print(sensor19_on);
Serial.print(" ");
Serial.print(sensor20);
Serial.print(" ");
Serial.print(sensor20_on);
Serial.print(" ");
Serial.print(sensor21);
Serial.print(" ");
Serial.print(sensor21_on);
Serial.print(" ");
Serial.print(sensor22);
Serial.print(" ");
Serial.print(sensor22_on);
Serial.print(" ");
Serial.print(sensor23);
Serial.print(" ");
Serial.print(sensor23_on);
Serial.print(" ");
Serial.print(sensor24);
Serial.print(" ");
Serial.println(sensor24_on);

}



Appendix B: MIDI Note Assignments

Midi 25 - G major

Midi 26 - D major

Midi 27 - A major

Midi 28 - E major

Midi 29 - B major

Midi 30 - Gb major

Midi 31 - Db major

Midi 32 - Ab major

Midi 33 - Eb major

Midi 34 - Bb major

Midi 35 - F major

Midi 36 - A minor

Midi 37 - E minor

Midi 38 - B minor

Midi 39 - F# minor

Midi 40 - C# minor

Midi 41 - G# minor

Midi 42 - Eb minor

Midi 43 - Bb minor

Midi 44 - F minor

Midi 45 - C minor

Midi 46 - G minor

Midi 47 - D minor

Midi 60 - C

Midi 61 - G

Midi 62 - D

Midi 63 - A

Midi 64 - E

Midi 65 - B

Midi 66 - Gb

Midi 67 - Db

Midi 68 - Ab

Midi 69 - Eb

Midi 70 - Bb

Midi 71 - F

Midi 72 - A

Midi 73 - E

Midi 74 - B

Midi 75 - F#

Midi 76 - C#

Midi 77 - G#

Midi 78 - Eb

Midi 79 - Bb

Midi 80 - F

Midi 81 - C

Midi 82 - G

Midi 83 - D

Midi 96 - calm-river-ambient

Midi 97 - nature sounds

Midi 98 - thunder

Midi 99 - 8-bit horror nosie

Midi 100 - video game death
sound

Midi 101 - video game jump
sound

Midi 102 - 8-bit sample
music/beat

Midi 103 - coin collect sound

Midi 104- random chip tune
bass loop

Midi 105 - long game over

Midi 106 - wolf howl

Midi 107 - typewriting

Midi 108 - c

Midi 109 - c#

Midi 110- d

Midi 111 - d#

Midi 112 - e

Midi 113- f

Midi 114 - f#

Midi 115 - g

Midi 116 - g#

Midi 117 - a

Midi 118 - a#

Midi 119 - b


