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What is MIDI? 
By Paul D. Lehrman, PhD 
Lecturer in Music and Director of Music Engineering, 
Tufts University 
 

MIDI is an acronym for “Musical Instrument Digital Interface.” It is primarily a specification for 
connecting and controlling electronic musical instruments. The specification is detailed in a document 
called, not surprisingly, “MIDI 1.0 Detailed Specification”, which is published and distributed by the MIDI 
Manufacturers Association and available free to all MIDI Association Members on the www.midi.org 
website. 
 The primary use of MIDI technology is in music performance and composition, although it is also 
used in many related areas, such as: audio mixing, editing, and production; electronic games; robotics; 
stage lighting; cell phone ring tones; and other aspects of live performance.  

The MIDI command set describes a language that is designed specifically for conveying information 
about musical performances. It is not “music”, in that a set of MIDI commands is not the same as a 
recording, say, of a French horn playing a tune. However, those commands can describe the horn 
performance in such a way that a device receiving them—such as a synthesizer—can reconstruct the 
horn tune with perfect accuracy. 

Included in the MIDI Specification is a method for connecting MIDI devices via 5-pin DIN connectors 
and cables, which will be explained later in this article. But over the years other means have been 
developed for sending and receiving MIDI commands, such as USB-MIDI and Bluetooth-MIDI, and 
readers should consult the www.midi.org website for the latest information regarding enhancements to 
the MIDI Specification. 

How it came about: a short history of electronic music 
Electronic music has been around since the 1940s, and in some respects it’s even older than that. In 

the early days, electronic composers built studios out of discrete components, like oscillators, filters, 
mixers, and frequency shifters, many of which were originally designed for use in decidedly non-musical 
contexts, such as radio repair, testing laboratories, audiology clinics, and telephone networks, as well as 

conventional recording studios. From these tools, which made up the 
“classical” electronic-music studio, composers could create a wide 
variety of interesting and (in 
the right hands) musical 
sounds.  

Some inventors in those 
early days designed electronic 
gear expressly for musical 
purposes, and among the 
results were instruments that 
had their own distinct sounds, 
like the Theremin, the 
Trautonium, and the Ondes 
Martentot, and instruments that 
used electronics to imitate 
conventional instruments, like 
the Hammond organ and the Cordovox. 
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The dawn of synthesizers: patch cords and voltage control 
By the 1960s, the first dedicated electronic-music systems, known as “synthesizers,” appeared. Early 

synthesizers consisted of modules that took over the functions of the discrete components of the 
classical studio, as well as new types of modules specially designed for music manipulation. These 
included envelope generators, which change a 
sound’s amplitude (volume) over time; envelope 
followers, which impose the amplitude envelope of 
one sound onto another; modulators, which 
combine two or more sounds in ways that create 
more complex sounds; and sequencers, in which 
discrete events or parameter values can be stored 
and played back over time, with the tempo 
determined by a timer or “clock”, which itself was 
often a module. 

Because the modules in a synthesizer were 
designed to work together, interfacing them in 
unusual and creative ways was relatively easy: an 
envelope generator could be used to open and 
close a filter, for example, so that a sound’s tone 
or timbre could evolve over time, as well as (or 
instead of) its volume. A sequencer could be used 
not only to play a series of pitches, but also to 
change—in discrete steps—the volume or tonal characteristics of a sound over time.  

Modules were connected together with short cables known as “patch cords”, and the connection of 
many cables to create a particular sound or sequence of sounds became known as a “patch.” This term 
survives today in digital and software synthesizers to describe a particular sound or “voice.” In the 
modular synths, the patch cable carried voltages, and the modules communicated with each other using 
“voltage control,” in which a module receiving a varying voltage behaved as if it had a knob that was 
being turned by an unseen hand. 

Here’s an example: a conventional oscillator has a knob for setting its output frequency. A voltage-
controlled oscillator instead has a control input that accepts varying voltages and changes the output 
frequency based on that voltage. A 1-volt signal may produce a tone at 100 Hz, a 2-volt signal a 200-Hz 
tone, a 3-volt signal a 400-Hz tone, and so on. With each 1-volt increase in the control voltage, the pitch 
of the oscillator rises by one octave: i.e., its frequency doubles. This is known as “1-volt-per-octave” 
voltage control. Voltage control can also be applied to a filter, in which it can vary the cutoff frequency or 
bandwidth; to a mixer, in which it can change the level of one or more inputs; or to a sequencer’s clock, 
in which it can control the tempo. 

Voltage control became very popular among synthesizer manufacturers, but it had its problems. 
Since there was no standardization of voltage-control schemes, synthesizers from different 
manufacturers were often incompatible with each other: some used 1-volt-per-octave, while others used 
different ratios or curves, so that a control change that raised the pitch an octave on one synthesizer 
might only raise it a minor 3rd on another. Also, because the signals were analog in nature, absolute 
accuracy and repeatability were hard to achieve. Two sounds in a patch might be in tune one moment 
and out of tune a few minutes later, as the components heated up and the voltages drifted slightly. 

A different type of signal was necessary for timing, where audio events produced by different 
modules had to be synchronized or coordinated. Instead of smoothly changing voltages, what was 
needed was a more immediate, binary (on/off) signal. These signals, generally pulses of a certain length, 
were known as “triggers.” A sequencer could fire off triggers to initiate sounds as easily as it sent 
voltages that controlled timbres. Unfortunately, the variations in triggering schemes among different 
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synthesizer makers were even greater than those in voltage control. 
In recent years, modular synthesizers have made a comeback among musicians who like their 

“hands-on” way of controlling sound. Especially popular is a modular rack format generally referred to as 
"Eurorack", with dozens of companies around the world offering modules that can be assembled into a 
system. Fortunately for fans of these instruments, their manufacturers have made their devices more 
compatible (although not completely) with each other, and modern electronic components are more 
stable, so that drift is not as much as a problem. Many manufacturers make MIDI-to-trigger and control-
voltage converters, so that their instruments can be integrated into a MIDI studio or performance rig. 

Digital Communications 
In the late 1970s, synthesizers using digital electronics were introduced, largely solving the problems 

of repeatability and oscillator drift. Digital synthesizers use mathematical algorithms to produce digital 
“models” of waveforms, and convert them into audio signals using digital-to-analog convertors, or DACs. 
“Patches,” now also known as “programs,” became lists of digital parameters, describing module settings 
and signal routings. Programs could be stored in a synthesizer’s internal digital memory, and recalling 
one became a simple matter of pushing a button. 

The next challenge was to figure out a way to use digital electronics to connect synthesizers to each 
other. As synthesizer-based rock bands became more popular, a common plea among performers who 
found themselves trucking around huge arsenals of electronic keyboards was for a system that would          
let them operate all these instruments from 
a single, common keyboard, and use 
switches or other compact devices to 
determine which sounds they produced 
when. 

Roland, Oberheim, Sequential Circuits, 
and Fender Rhodes were among the 
manufacturers who developed proprietary 
digital control schemes that allowed 
keyboard synthesizers to be slaved to each 
other, as well as external sequencers, 
capable of playing entire songs or sets, to 
be integrated with them. For example, a 
musician using a Roland synthesizer would 
play a piece of music on the keyboard, and 
data representing all of the keystrokes 
would be sent out of the synthesizer on a special digital control cable, connected to a Roland sequencer 
in its own box. The sequencer recorded the keystroke data in real time, and could play it back later with 
great accuracy. The sequencer could be connected—again with a digital cable—either to the same 
instrument from which the music originally came, or to another Roland synthesizer capable of reading 
the digital information. 

Although some of these digital control schemes were highly evolved, the problem of incompatibility 
remained. Each manufacturer had its own ideas for implementing digital control, so instruments from 
different manufacturers still couldn’t communicate with each other. 

Sequential Circuits, a California synthesizer maker founded by an inventor named Dave Smith, 
became the first company to propose a common digital interface for synthesizers from different 
manufacturers, and introduced its idea of a Universal Synthesizer Interface (USI) in October 1981 in a 
technical paper at a convention of the Audio Engineering Society (AES). Meetings followed over the next 
year among representatives of several American and Japanese electronic instrument makers, and the 
first MIDI synthesizer, Sequential’s Prophet 600, shipped in December 1982. The first two MIDI 
synthesizers from different companies were publicly hooked together a month later (a Prophet 600 and 
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a Roland Jupiter 6) when Dave Smith from Sequential Circuits and the late Ikutaro Kakehashi from 
Roland Corporation introduced the technology to an astonished crowd at a meeting of the National 
Association of Music Merchants (NAMM).   

MIDI synthesizers immediately hit the market from a number of manufacturers, and the official MIDI 
Specification 1.0 was published in August 1983 based on the input from and collaboration between the 
leading synthesizer companies at the time. Some manufacturers held onto their own control schemes for 
a little while, thinking theirs was still a better way to do things, but it quickly became obvious that MIDI 
was going to become the undisputed industry standard, and soon just about every serious electronic 
instrument under development included MIDI capability.  

The MIDI protocol became hugely successful very quickly, and fueled by MIDI technology, the 
electronic music hardware and software industries exploded. Today MIDI technology is found not just in 
keyboards and hardware synthesizers, but also in all sorts of musical controllers, software synths, mixing 
and DJ consoles, audio processors, games, theatrical control systems, Websites, and billions of 
smartphones. 

The Goals of MIDI 
MIDI is based on two major principles: universality and expandability. Every manufacturer of MIDI 

equipment, if it uses the word “MIDI” anywhere on the case or in the documentation, is expected to 
implement MIDI technology correctly. This means that the device must accept and correctly act upon (or 
ignore, if appropriate) the data generated from any other MIDI device, and also that any MIDI data it 
generates must be understood (or ignored, if appropriate) by any other MIDI device, without causing any 
errors. It also means that every MIDI command has the same meaning to the receiver as it does to the 
transmitter (which is not to say that it has to be interpreted the same way, but that's up to the user).  

Just as important as a device’s ability to know what to do when it receives MIDI is that it knows what 
not to do. The MIDI Specification is a very comprehensive set of commands, and no device on the 
market can respond to every command in it. This is perfectly okay, as long as the device knows enough 
to ignore the commands it doesn’t understand, and not try to interpret them. This feature is a key aspect 
of MIDI’s universality, and has also allowed the MIDI Specification to be expanded over the years. New 
commands added to the spec that aren't understood by older devices are simply ignored. 

Flexibility 
The MIDI command set was deliberately designed with “holes” in it: commands that are purposely 

left undefined. This was done so that as new uses for MIDI are developed, the command set can be 
expanded to accommodate them. For example, MIDI Time Code Quarter Frame Messages were not in 
the original Specification and the command they use was “Undefined” in the original Spec. Since devices 
built before 1987 were designed to ignore commands that were undefined at the time, MIDI Time Code 
messages should not screw them up—they will continue to ignore the messages. 

Other new functions are possible using new combinations of commands. The MIDI Sample Dump 
Standard, added in 1986, and MIDI Show Control, added in 1991, both utilize an originally unused form 
of System Exclusive messages known as “Universal System Exclusive.” Devices, new or old, that don’t 
understand these messages will ignore them. Other MIDI commands have been redefined, or their 
meanings clarified, through periodic published supplements and revisions of the MIDI Specification, but 
they remain basically unchanged, and their compatibility with existing MIDI devices is never 
compromised. 

Today, the MIDI Specification is still referred to as “1.0”, even though it has expanded substantially 
through the years. The original command set is still contained in the Specification, and will never be 
altered. Every MIDI device ever made should be able to talk to every other MIDI device ever made—
even though some devices will do a lot more than others. This is one of the most profound aspects of the 
MIDI Specification:  a device created today with a MIDI port on it is still capable of communicating with a 
device manufactured over 30 years ago.  
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Simplicity 
The MIDI Specification is, compared to a specification like MP3 digital audio, quite simple. That’s 

because it takes advantage of a principle called “distributed intelligence.” Instead of a central controller 
doing all the work and sending all the musical waveform data, and the peripherals being merely passive 
converters of that data into analog sound, in MIDI the peripherals themselves have computer processors 
and memory. 

MIDI assumes that the receiving device can take care of the task of defining and producing the 
sound when it receives an appropriate command. This means that the structure of the language can be 
kept small and simple. 

Costs and Compromises 
Another, less obvious, goal of the original designers of MIDI was to keep costs down. This was done 

in the interest of universality, so that as many manufacturers as possible would adopt the protocol. When 
it was first introduced, it was estimated that adding MIDI technology to a digital synthesizer would cost 
between $5 and $10 at the manufacturing level. Anything more than that, the reasoning went, would give 
too many manufacturers an excuse to balk at incorporating it into their products. 

This decision was not universally hailed, however. There were certain trade-offs that had to be made 
to keep the cost of MIDI down (especially hardware cost) which many people thought would severely 
limit its capabilities. As it turns out, these critics were not entirely wrong, and there are a number of 
issues involving the speed and data capacity of the MIDI-DIN transport, but these issues have largely 
been resolved by transmitting MIDI data over alternate transports like USB. 

How It Works 
The MIDI Electrical Specification defines a serial data protocol, which means that MIDI commands 

are sent one "bit" at a time over the cable (although other transports may use a different approach). A 
"bit" is a single binary digit: on or off, 0 or 1. In the MIDI protocol, bits are grouped into “bytes” of 8 or 10 
bits, depending on how you count them (which we’ll explain in a moment), and the bytes are combined 
into commands, or messages. A MIDI command may consist of one byte, or two, or three, or many. 
What the MIDI Specification does, in a nutshell, is to specify how the commands—the groups of bytes—
are to be structured and deciphered. It also defines the electrical characteristics of circuitry that can be 
used to transmit and receive the data. 

Bits and Bytes 
The MIDI Specification includes both hardware (the electrical spec, also known as "MIDI-DIN") and 

software (the message spec, also known as "MIDI Protocol") and in its original form both of these parts 
were necessary to transmit MIDI data. 

When MIDI is sent over a MIDI-DIN cable, the signal is a pulse, like a square wave, transmitted 
31,250 times per second, on a 5-volt line. The MIDI spec allows a ±1% tolerance in the speed—anything 
slower or faster than that will not work. This speed was chosen because 31,250 is a power-of-two 
factor—1/32nd—of 1,000,000. Back in the 1980s, 1,000,000 cycles per second (1 MHz) or half of that 
rate (500 kHz) were common clock speeds for the integrated circuits (or “CPUs”, for “Central Processing 
Units”) at the heart of personal computers, synthesizers, and other digital devices, and dividing that clock 
by a power of two to generate a MIDI stream is a simple thing for software and circuit designers to do. 
Since all microprocessors today still operate at (often very large) multiples of 1 MHz, that initial choice 
remains a good one. 

The MIDI-DIN signal is “asynchronous”, which means there is no underlying clock pulse going all the 
time unlike, for example, digital audio and SMPTE timecode, so a transmitter can start sending data at 
any moment, and the receiver is expected to understand it as soon as it arrives. 
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Since it is a digital signal, the pulse has two states: Logical 0 and Logical 1. These are actually 
“upside-down”: a Logical 0 is the current-on pulse, and Logical 1 is current-off. Since an idle MIDI line is 
a line with no current flowing, the first bit in any MIDI byte is always a 0 (On), and is known as the “start 
bit”. Following the start bit are eight data bits, which can either be 1s or 0s, followed by a “stop bit”, which 
is always 1 (Off). Therefore, a MIDI byte has 10 bits, but only eight of them actually carry information. 

The fact that the last 
bit is Off simply means 
that there has to be a 
minimum amount of Off 
time between one MIDI 
byte and the next: a 
“resting” interval of 
1/31,250 second. If that 
tiny “rest” is not there, 
and the next start bit 
(On) comes too early, 
the result is called a 
“framing error”, and the 
data will not be received correctly. 

Since the MIDI-DIN bit rate is 31,250 bits per second, and there are 10 bits in a byte, the MIDI byte 
rate is 3,125 bytes per second. Most complete MIDI messages require two or three bytes, so the 
transmission rate over MIDI of musical data is approximately 1000-1500 “events” per second. This is 
pretty fast, but not infinitely so. It means, for example, that there is no such thing as two absolutely 
simultaneously-occurring events in MIDI—any two events must be at least 0.6 milliseconds apart. While 
for the most part this is an acceptable situation, under some circumstances it can be a limiting factor in 
the performance of a MIDI system. 

Jacks and Cables 
MIDI data is sent in a "simplex" fashion, meaning it is sent in one direction only, from a transmitter to 

a receiver. With MIDI-DIN, MIDI data is sent from one physical device to another, emerging from the 
“MIDI OUT” jack on the sending device, using a "MIDI cable".  A MIDI cable consists of a shielded two-
conductor twisted pair, the same as balanced audio cable. The MIDI OUT jack is a 5-pin circular DIN-
style connector. DIN connectors were at one time common in European hi-fi equipment, which is where 
the name came from: it’s an acronym for “Deutsche Industrie Norm,” which means nothing more exotic 
than “German Industrial Standard.”  
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The MIDI signal is on Pin 5 of the connector, and the voltage to drive the circuit (see Figure 1) is on 
Pin 4. Pin 2 is connected to the cable shield, and Pins 1 and 3 are not normally connected.  

The other end of the MIDI cable is then plugged into a “MIDI IN” jack on the receiving device, which 
uses the same pin configurations, except that Pin 2 of the jack, the shield, is not connected. This is done 
to avoid the possibility of ground loops, in which different ground potentials of various devices connected 
together cause hum. In a studio containing dozens of discrete components, ground loops from audio and 
power cables are always a problem, and the designers of MIDI didn’t want their cables to contribute to 
the problem. In addition, the MIDI Specification states that the actual shield connections on the MIDI 
jacks should never be connected to any chassis or electrical grounds. 

In fact, to insure further against grounding and other possible electrical problems, MIDI IN jacks are 
not actually hard-wired to the synthesizer or other device on which they're mounted. Instead, all MIDI IN 
jacks contain an “optoisolator”, an electronic device consisting of a tiny light-emitting diode (LED) and a 
photocell. When the jack receives a bit, the LED lights up, and the photocell responds by sending current 
into the rest of the receiving device. Therefore, between the MIDI encoding/decoding circuitry on two 
different pieces of equipment there is never any direct electrical connection. 

The optoisolator is commonly connected to a chip known as a “UART,” for “Universal Asynchronous 
Receiver/Transmitter.” The UART translates the MIDI pulses into a form that the receiving device can 
understand. In a MIDI transmitter it works the other way around: the UART takes data from the 
synthesizer and makes MIDI out of it.  

 

Thru Jacks, Boxes, and Mergers 
Many MIDI devices have a third MIDI jack, labeled 

“MIDI THRU”. "Thru" jacks are needed because, unlike an 
audio signal, you cannot send a MIDI signal to two 
different destinations merely by running it through a Y-
connector. The optoisolator of the receiving device, so 
that it can screen out noise, is made to detect only signals above a certain voltage level. Dividing the 
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MIDI signal would cause its voltage to drop in half, and that would likely cause the optoisolator not to fire 
when a bit came in. 

Therefore, MIDI Thru jacks are provided to “echo” the MIDI data coming into the MIDI In jack of a 
device, so that it can be passed on to another device. The MIDI Spec says that this echo must be 
perfect—no data can be changed or filtered—and it must be instantaneous: there can be no delay. The 
output of the optoisolator at the MIDI In jack must be directly connected to the MIDI Thru jack. In 
addition, the MIDI Thru jack normally does not pass MIDI data created by the device on which it’s 
mounted; that is what the MIDI Out jack is for. 

In order to get the data from one 
MIDI transmitter to two different 
receivers, you must run a cable from the 
MIDI OUT jack of the transmitter to the 
MIDI IN jack of one receiver, and then 
another cable from the THRU jack of that 
receiver to the MIDI IN jack of the second 
receiver. The order of cabling—which 
receiver gets the direct line from the transmitter—in most cases doesn’t matter. This technique is called 
“daisy-chaining.” The number of receivers that can be in a daisy chain is theoretically unlimited, although 
there are some practical limitations.  

Sometimes a MIDI transmitter, such as a sequencer, needs to send data to a number of devices, 
and daisy chaining is impractical. For those situations, “MIDI Thru boxes” are available, which contain a 
single MIDI IN jack, and four, eight, or even more MIDI THRU jacks. 

A variation on the THRU jack that some devices offer is a “Thru/merge” option. With this option, MIDI 
data entering the MIDI IN jack is merged with data being generated by the device at the THRU jack, so 
that the Thru jack serves as both an OUT and a THRU.  

Just as a MIDI output line cannot be electrically split, two MIDI input lines cannot be combined with a 
Y-connector. Besides possible voltage problems, this can cause two MIDI commands to interfere with 
each other, which would cause errors. “MIDI merger boxes” take care of this problem: they have two or 
more MIDI INs and a single MIDI OUT, and their internal electronics have sufficient intelligence to keep 
commands from colliding. 

 

Getting MIDI into and out of a Computer 
In the early days of MIDI, different models of computers had many different kinds of ports—serial, 

parallel, and expansion–which were designed for printers, modems, and other accessories, and there 
were "MIDI interfaces" (adapters for MIDI-DIN connections) available for most of them. 

Today almost all MIDI interfaces are designed to be used with USB ports, and are compatible with 
almost all computers. 

As MIDI grew in popularity, and musicians' studios became larger and more complicated, MIDI 
interfaces were introduced that had multiple MIDI In and MIDI Out ports. This gave musicians the ability 
to control a large number of MIDI instruments, and also made possible the popularization of 
"multitimbral" MIDI instruments, which in many cases, as we will see later, required dedicated MIDI 
cables.   

MIDI without cables 
Many of today’s MIDI tools exist only in software: controllers and sequencers interact with 

synthesizers inside the operating system of a computer, and therefore there is no need (or even way) to 
run cables between them. Instead, special code is installed in the operating system that allows these 
software devices to communicate with each other. There are a number of different methods for 
implementing this inter-application communication that have been developed by the makers both of 
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these "virtual" instruments and of the computer operating systems themselves—Apple and Microsoft. 
They include Audio Units (AU), Virtual Studio Technology (VST), AAX, RTAS, Rewire, and DirectX. Even 
without cables, however, the MIDI Command Set works exactly the same way as if there were physical 
cables between the various components.  

Alternative MIDI Connections 
MIDI can also be transmitted over other types of cables, including USB, FireWire, Thunderbolt, and 

Ethernet. The most common of these at present is USB, and many of today's keyboards and synth 
modules have USB jacks. (These devices often have MIDI jacks as well to make them compatible with 
older systems.) All of these electrical "transports" have a much faster data rate than MIDI-DIN, and they 
can be bi-directional so there is no need for separate IN and OUT jacks. Again, the Command Set 
remains the same regardless of how the signals are delivered.  

Despite these advantages, there are two potential problems when using USB and other transports 
for MIDI. One is that in most cases these devices cannot be connected directly to each other: they have 
to have a computer at the center of the system in order to communicate. So unlike with traditional MIDI 
cables, you cannotconnect, for example, the USB connector on a MIDI keyboard to the USB connector 
of a MIDI synth module: they both have to be connected to a computer, and the computer software is 
responsible for routing the MIDI data from the source keyboard to the destination synth.  

The second is that the host computer itself needs to be able to recognize that the device plugged 
into is transmitting and/or receiving MIDI, and to correctly interpret the MIDI data going in or out. This is 
done by a piece of software in the operating system called a "driver." The major computer operating 
systems (Mac OS, Windows, iOS, Android, and Linux) all include "native" drivers (provided with the OS), 
but some manufacturers of USB MIDI equipment will design their products so that they require custom 
drivers. If a piece of gear works with the built-in OS drivers it is said to be “class-compliant”, and all is 
well. But if a manufacturer makes a piece of gear that is not class-compliant for whatever reason, it is the 
manufacturer's responsibility to provide proper drivers for their customers’ operating systems. These 
drivers are usually downloadable from the manufacturer's website, and then must be installed into the 
user's operating system. 

In contrast, a piece of equipment that sends and receives data over conventional MIDI cables does 
not need any such driver: the fact that it is MIDI-compatible is enough to ensure that it works with other 
MIDI gear.  
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The Commands 
When someone plays a MIDI “controller”, or transmitter, it generates one or more MIDI commands or 

messages. Playing a note on a keyboard, for example, sends a message corresponding to that action 
out the keyboard's MIDI OUT jack. The same thing happens when you hit a drum pad, press a pedal, 
move a pitch bend lever, move a fader, or blow into a wind controller.  

A MIDI message contains the information for a complete musical action. When you press a key on a 
keyboard, it generates a message that consists of three bytes. The first byte describes the kind of action: 
a key has been pressed. The second byte is the number of the key that’s been pressed, that is, which 
note you’ve played. The third is the velocity with which the key has been pressed: the amount of time 
that has elapsed between the start of the key’s travel and the end. A higher velocity number means the 
travel time was less, which means the key was struck harder. This is usually, but not always, interpreted 
as higher volume. 

 
Kind of action: a key is pressed 
 Command Byte = Note On 
Which key is pressed? 
 Data Byte 1 = note number 
How hard was the key played? 
 Data Byte 2 = velocity  
 
The first byte is known as a “Command byte” or “Status 

byte” (the two terms are synonymous). Command bytes say, “Do something!” In this example, what it’s 
doing is called “Note On.” 

The second and third bytes are the “Data” bytes. Data bytes say, “Here are the parameters for what 
to do regarding this particular command.” 

The MIDI Specification dictates the exact meaning of all of the Status bytes (except the few that are 
purposely left undefined), as well as the number of Data bytes that must follow each Status byte, and 
what they mean. Some MIDI commands require one Data byte, some need two, some have none, and a 
special class of commands, “System Exclusive”, have an undefined, and often very large, number of 
Data bytes.  

Binary, Decimal, and Hexadecimal Notation (Don’t skip this if you really want to 
understand how MIDI technology works!) 

MIDI messages are 8-bit bytes. If we look at them as binary numbers, this means they range from 0 
(all bits are zero) to 255 (all bits are 1). When we refer to these messages, we can do so in binary (e.g., 
10010011) or in decimal (e.g., 147). But there is another form of notation that works even better, 
although it takes some getting used to. This is base-16, or hexadecimal notation, often called simply 
“hex”.  

In hexadecimal notation, the far-right number is the ones column, but the second-from-the-right 
number, instead of being the 10s column as it is in decimal, is the 16s column. So the number “14” in hex 
is equal to 20 in decimal: (1x16) + (4x1). “38” in hex is (3x16) + (8x1), or 56 decimal. In this document, 
the letter “H”, for “hex”, will always follow numbers in hexadecimal notation. 

Why use hexadecimal? Because it is a very convenient way to express MIDI commands: every 8-bit 
MIDI value can be expressed as a two-digit hex number, and each type of MIDI command starts with a 
different hex digit, which can make things very tidy. For example, the MIDI message 10010011 can be 
broken up into two parts: 1001 and 0011, and each given a hex value: 9 and 3 in this case. So the MIDI 
byte 10010011 is 147 in decimal or “93” in hex. The byte isn’t really broken up into two parts when it is 
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sent—this is just a convenience to let us look at and understand a MIDI data stream quickly. 
One problem with hex notation is what to do with numbers above 9. The answer is to use letters: 
A (hex) = 10 (decimal) 
B = 11 
C = 12 
D = 13 
E = 14 
F = 15 
So the number 47 in decimal is expressed in hex as 2F: (2x16) + F (that is, 15) x1. The possible 

values of a MIDI byte are 0 through 28-1, or 0-255 decimal, or 00-FF in hex.  
Why is this an advantage over decimal notation? You’ll see when we get into the details of how MIDI 

commands are structured. 

Anatomy of a Command 
Here’s a typical MIDI command, in binary:  10010000   01000101   01100101 
In decimal, this reads as:   144  69  101 
In hex, this reads as:     90H   45H   65H 
 
The first byte is the Command byte. The MIDI Specification says that any Command byte that starts 

with a 9 (in hex) is defined as a Note On. (We’ll deal with the second digit a little later.) The specification 
then says the second byte is the note number. The lowest MIDI note (00H—we always use leading 
zeroes in hex notation to make sure every byte has two digits) is C, five octaves below Middle C. The 
number 45H in the example translates to 69 in decimal, thus we want the 69th note above the lowest C: 
that's the F above Middle C. The third byte, 65H, according to the Specification, is the velocity, as we 
discussed earlier. In decimal, this number is 101. Since the maximum velocity of a Note On is 7FH (127), 
this note is pretty loud. 

If the first bit of a MIDI message is a “1”, then the message is a Command byte. If the first bit is a “0”, 
the message is a Data byte. This makes a receiver’s initial task when it analyzes a received MIDI byte 
very simple: if it sees the first bit is 1, it knows the byte is a Command byte, while if it sees it is 0, it 
knows it is a Data byte, and it knows to relate the Data byte to the last-received Command byte.  

Here’s where hex notation comes in handy: In hex, all Command bytes start with 8 or more. All Data 
bytes start with 7 or less. Compare that with their decimal equivalents: Command bytes are 128-255, 
Data bytes are 0-127. Not exactly intuitive, is it? 

For a MIDI message to be interpreted properly it must consist of the correct number of bytes, as 
dictated by the MIDI Specification, and it may not be interrupted except in a few very special cases. If an 
insufficient number of Data bytes follow a Command byte before the next Command byte is received, the 
receiving device will assume the information is in error. Under the best of circumstances, this kind of 
error is simply ignored, but in some devices it can cause strange behavior or even hang up a component 
completely, so maintaining a clean MIDI data stream is always important. 

A special case occurs when the number of Data bytes following a Command byte is too high. This 
invokes a condition called “Running Status” which we'll discuss a little later. 

MIDI Channels 
The MIDI Specification allows 

for 16 data channels. This is so 
that multiple MIDI devices can 
each receive distinct information 
with only a single MIDI cable (real 
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or virtual) connecting them. Just like the tuner in a television set, each receiving device can be set to 
recognize data on one and only one specific MIDI Channel, and to ignore data on all the other Channels. 

Here’s an example: a sequencer sends data to three synthesizers, one playing drum sounds, one 
bass sounds, and one piano sounds. The sequencer can send each musical part on its own MIDI 
Channel, and put them all on the same cable. Since each synthesizer is “tuned” to the appropriate 
Channel, it plays only the notes intended for it, and ignores the rest, so the drums don’t play the bass 
part. 

The Channel identity of a MIDI command is located in the second half of the Command byte—the 
second four bits, which (Here’s another place where hex comes in handy!) make up the second hex digit. 
That digit can be 0 to F (hex), or 0 to 15 decimal, which gives us 16 MIDI Channels. In the physical 
world, we don’t speak of “Channel 0” (nor do most people speak in hex), so MIDI Channels are normally 
referred to as 1 through 16. Therefore, the MIDI Channel of a Command byte whose second digit is n is 
actually n+1.  

So the Command byte for a Note On command on MIDI Channel 8 will be 97H. A Note On command 
on Channel 12 will begin with the Command byte 9BH (since B in hex = 11 in decimal). 

While the first MIDI synthesizers operated on only one Channel, soon synthesizers appeared that 
could play different sounds on different Channels at the same time. These are called "multitimbral" 
instruments, and they behave like 16 discrete synthesizers, all addressed on a single cable. Since they 
would take up all of the Channels on a single MIDI cable, multitimbral synths, as we mentioned earlier, 
were largely responsible for the growth of multiport MIDI interfaces, which allowed musicians to connect 
to and work with more than one multitimbral instrument in their studios. 

The Command Set 
Here is the Command set in a simple table in numerical order. The first half (four bits, or first hex 

digit) of the Command byte determines the nature of the command, and the second half the Channel. 

 
Name Hex values  

(channels 1-16) 
Decimal 
values 

Data bytes 

Note Off 80-8F 128-143 2 (note number, velocity) 

Note On 90-9F 144-159 2 (note number, velocity) 

Key Pressure A0-AF 160-175 2 (note number, pressure) 

Control Change B0-BF 176-191 2 (controller number, value) 

Program Change C0-CF 192-207 1 (program number) 

Channel Pressure D0-DF 208-223 1 (pressure) 

Pitch Bend E0-EF 224-239 2 (LSB, MSB) 

System Exclusive F0 240 variable 

System Common F1-F6 241-246 0, 1, or 2 (see below) 

End of System Exclusive F7 247 0 

System Real Time F8-FF 248-255 0 (see below) 
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Notes 
9nH is Note On. (Remember, n+1 is the Channel number.) When it is received, a note starts 

playing. As we saw earlier, this command has two data bytes: note number and velocity. Since the first 
bit of a MIDI Data byte is always zero, this gives us a range of 00000000 to 011111111, or 00H to 7FH, 
or 0 to 127 decimal, for both note numbers and velocities.  

As far as the note number is concerned, each increment in value is normally equal to a half-step, so 
this numerical range gives us a musical range of 128 half-steps, or more than 10-1/2 octaves. That’s a 
lot bigger than your average grand piano (which has 88 keys, or 7-1/3 octaves), and in fact is greater 
than the range of human hearing which, at its best (about 20-20,000 Hz), is just under 10 octaves.  

As far as velocities are concerned, this gives us 128 values between pppp and ffff, which is plenty. 
(Although for reasons we’ll explain a little later, a velocity value of zero gives this command a different 
meaning, so there are actually only 127 values. Not much difference.) 

Even inexpensive keyboards that are not velocity sensitive need to send a velocity byte with their 
Note On messages. The Spec requires non-velocity-sensitive keyboards to send a velocity byte of 40H 
(=64 decimal). 

8nH is Note Off: a key has been released. The note stops playing, or its envelope goes into the 
Release stage, if it has one. Like Note On, Note Off needs two Data bytes: the note number, and the 
velocity, which in this case is the amount of time the key takes to return to its “up” position. If you send a 
Note On for a specific note, you can’t stop the note playing just by sending any Note Off, you have to 
send a Note Off with the same note number. 

The ability to respond in a meaningful way to Note Off velocity is not common on MIDI synthesizers, 
but it is sometimes used. Note Off velocity can be used to affect the speed of a Release stage, or the 
volume of an “after” sound, like the dropping of the quill back onto the string in a harpsichord. 

By convention, a Note On with a velocity of 00 is considered equivalent to a Note Off.  This is 
important in the use of Running Status, which we’ll talk about in a moment. Some devices transmit only 
Note Ons, and use Velocity-zero Note Ons to turn notes off, while some transmit true Note Offs. The 
MIDI Specification states that either method is acceptable. 

 

Program Change 
CnH (remember, C=12 decimal) is Program Change, sometimes called “patch change”. As we saw 

earlier, in a digital synthesizer a “program” is a memory location containing all the values of the 
parameters that determine an instrument’s sound. One set of values—for waveforms, frequencies, 
envelopes, signal routings, etc.—might define a brass sound, while another defines a flute sound, and 
another a funky bass.  

You can change programs on a synthesizer’s front panel by pressing a button. The MIDI Program 
Change message sent from a MIDI controller to another MIDI synthesizer lets you do this remotely. 

In live performance, this means you can press one button on a keyboard and one or more synths in 
a stack will change their sound. In a sequence, it means that a single synthesizer can have different 
instrumental identities at different points in a song, if you send out appropriate Program Change 
commands at the proper times. Program Changes are also used by effects devices to change their 
identity: for example, one program in a device may be for flanging and another may be for hall-type 
reverb; and by mixing consoles to change “scenes”, or set-ups for different songs. A Program Change 
message transmitted from a keyboard or a sequencer allows the device to change instantly at that 
moment. 

If a MIDI synthesizer receives a Program Change message while it is in the middle of a note, a 
number of things can happen, depending on how the synthesizer is designed. Some synthesizers 
immediately fade the note out. Some try to execute the Program Change and impose the new program’s 
parameters on the current program, often with unpleasant results. More recent devices (usually ones 
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that have a feature called “dynamic voice allocation”) will let the current note finish unaltered, and will 
change the sound only on notes that start after the Program Change message was received.  

The Program Change message has only one Data byte: the program number. Therefore it can only 
address 128 different programs in a synth. Most modern synths have memory for far more programs 
than that, so there is another command, called Bank Select, which we'll look at shortly that expands this 
command's capabilities. 

Continuous Controllers 
BnH is Control Change. A Continuous Control Change message (often called just “Controller”, 

which should not to be confused with a controller device, like a keyboard) generally refers to a musical 
gesture that is not a note. Often it is something that can change the character of a sound after the note 
has started. Common examples of Controllers are modulation wheel, which normally adds vibrato or 
changes a filter parameter; sustain pedal (which in fact is usually a switch), which keeps the Sustain 
portion of the envelope going; or volume pedal, which allows level changes or fade-ins and -outs.  

Note that MIDI volume is a very different concept than MIDI velocity: the former is a continuous 
parameter that can change while the note continues to sound, while the latter only affects the note when 
it starts (or stops, in the case of Note Off velocity). Also, like all Control Change messages, MIDI Volume 
affects all the notes on the Channel it is sent to, while velocity affects individual notes. 

The MIDI Spec allows for 128 different Control Change messages. A Control Change message has 
two data bytes: the Controller number, and the value of the Controller at that moment. Control Change 
messages often occur in streams, representing the continuous movement of a wheel, pedal, or slider. 

Many controllers have designated functions in the MIDI Specification: Modulation wheel is Controller 
01, Volume pedal (or knob, or slider) is Controller 07, and Sustain pedal is Controller 40H (64 decimal). 
These designations are not absolutely required in a piece of MIDI gear, but they are provided to minimize 
confusion and make communications as smooth as possible. The number of controllers available in the 
MIDI spec means that up to 128 different parameters on a synthesizer—hardware or software—can be 
modified in real time using separate Control Change commands. On a multitimbral synth, each Channel 
has its own set of 128 Control Change commands. 

When MIDI was being developed, there was concern that the number of values available in a Control 
Change command—128—was too small. For example, if a synth's volume control has 128 discrete 
levels, when you change the level you might hear the change in volume as an audible "step" in the 
sound. When a lot of those steps occur quickly, such as when a volume pedal is being moved, it could 
generate what is called "zipper noise." So the creators of MIDI specified that Controllers 00-19H (0-31 
decimal) could be paired with controllers in the range 20-39H (32-63 decimal), to address the same 
function, and together these "double-precision" controllers could describe 128x128, or 16,384 different 
values. Controller 01 was paired with Controller 21H (33 decimal), Controller 07H was paired with 
Controller 27H (39 decimal), and so on. When Controllers are used this way, the lower-numbered 
Controllers are the Most Significant Bytes (MSB), while the higher-numbered ones are the Least 
Significant Bytes (LSB).  

In practice, however, double-precision 14-bit Controllers turned out to be mostly unnecessary, and 
so their use is now rare, with manufacturers just sticking with the lower-numbered (MSB) Controllers and 
using the higher-numbered ones for different functions, unrelated to the lower-numbered ones. 

A special meaning was given to Controller 00 a few years after the initial adoption of the MIDI 
Specification. As we mentioned earlier, today's synths have room for far more programs than the 
Program Change command can address, so Controller 00 was designated as a "Bank Select" command. 
Synthesizers that recognize this command can organize their programs into up to 128 different banks, 
each with 128 programs, or a total of 16,384 programs. The Bank Select command by itself does not 
change programs in a synth; it simply selects the bank from which program changes will be selected—
from 0 to 127 based on the command's second Data byte—which the synth will choose from when it 
receives the next Program Change command. 
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Channel Mode Messages 
Controller numbers 78H (120 decimal) and above are called “Channel Mode” messages, because 

they have very specific functions on the MIDI Channel they are sent. Not every device recognizes them, 
but they are useful in many circumstances. 

Controller 78H is “All Sound Off.” Any device that receives this message is supposed to 
immediately turn off all notes on the designated Channel, and set the volume of all voices to zero (that is, 
notes aren't allowed to fade). In an effects device, this message cuts off the tail of a delay or a reverb, 
but it doesn’t turn off the effect: new signals coming into the audio input are processed normally. The 
second Data byte, following the controller number, is usually 00.  

Controller 79H means “Reset All Controllers” (on the designated Channel): in other words, set all 
controller values to zero. The second Data byte is irrelevant.  

Controller 7AH is “Local Control.” Local Control refers to whether the keyboard on a synthesizer 
and the sound-generating circuitry are linked together—i.e., when you play a key, does it make a sound? 
When Local Control is On (the Data byte following the controller number is 7FH), it does. When Local 
Control is Off (the Data byte is 00), it does not. (Any other values for the last Data byte should be 
ignored, although some devices interpret any non-zero value as On.) While the purpose of it may not be 
initially obvious, Local Control is a very important function, and the ability to “decouple” a synthesizer and 
its keyboard, which occurs when Local Control is Off, is crucial in a multi-synth setup where a 
synthesizer is being used as a master keyboard. 

Controller 7BH means “All Notes Off” (on the designated Channel), and is useful in emergencies 
when notes are stuck on and you don’t know why. It lets you silence the sound quickly. Sending specific 
Note Off messages is always the best way to silence a synthesizer, but this command accomplishes the 
same thing in a hurry without having to first figure out which notes are sounding. Again, the second Data 
byte is ignored. It’s not quite the same as All Sounds Off, because notes are allowed to decay naturally, 
and it doesn’t necessarily affect the audio in effects units.  

Controllers 7CH through 7FH are discussed under “Modes” later in this chapter. 

Pressure 
DnH is Channel Pressure, sometimes known as “mono aftertouch,” 

or just “aftertouch.” Channel Pressure is a measure of how hard a key is 
pressed after it is struck and is at the bottom of its travel. Special 
sensors below the keyboard are used to detect this pressure, which is 
often used to add vibrato to a voice, or to change its timbre or pitch. It 
works on all notes on a Channel—if pressure is applied to one key, all 
the notes are affected. Channel Pressure has one Data byte: the pressure value.  

AnH is Polyphonic Key Pressure, sometimes known as polyphonic (or just “poly”) aftertouch. It is 
similar to Channel Pressure, except that each note has an independent sensor, and can be addressed 
individually. It allows, for example, vibrato or a timbral change to be applied to one note in a chord but 
not the others. A Polyphonic Key Pressure command has two data bytes: the note number, and the 
amount of pressure.  

Polyphonic Key Pressure is somewhat rare in the world of MIDI, because it is highly data intensive, 
and the amount of data it uses can clog a conventional MIDI stream and cause delays or errors. But it is 
becoming more common as MIDI systems that use faster transports have become more available. 

Pitch Bend 
EnH is Pitch Bend. Pitch Bend is usually generated by a wheel, lever, or joystick, with a spring-

loaded center return.  
Pitch Bend works both upwards and downwards, but there is no way to send negative numbers over 

MIDI. Therefore, a data value of 00 is considered maximum downward bend, and “no bend” is a value in 
the middle of the range (40H, or 64 decimal), while 7FH is maximum upward bend. Obviously, no 
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command at all is also interpreted as “no bend.” The Reset All Controllers messages described above 
also resets Pitch Bend to the middle of its range (but not to zero). 

The amount that a sound’s pitch will change in response to a Pitch Bend command is determined by 
the receiving synthesizer: there will usually be a parameter in that device called “pitch bend range” or 
some equivalent, which will determine the pitch change, in half-steps, that will be effected when a Pitch 
Bend command of maximum (7FH) or minimum (00) value is received. If two MIDI synthesizers are 
expected to bend notes in concert, it is imperative that the pitch bend range in each of the synths is set 
to respond in the same manner. The pitchbend range parameter can often be set by a Control Change 
command. 

Pitch Bend takes two Data bytes, the first one being the Least Significant Byte (LSB) and the second 
being the Most Significant Byte (MSB). As with 14-bit controller pairs described earlier, this means that 
the number of possible Pitch Bend values is 16,384. It was set up this way in the Spec so that even at 
the highest pitch bend ranges, smooth-sounding pitch sweeps could still be accomplished. 

Practically speaking, however, as with 14-bit Controllers, the LSB is almost never used, and it is 
normally set either to zero, or to some arbitrary constant, or to the same value as the MSB. The MSB 
handles the entire range: 00 is maximum downward bend, 7FH is maximum upward bend, and 40H is no 
bend. 

Even though there aren't really any negative numbers, some sequencers and other devices display 
Pitch Bend messages as positive and negative numbers, with a range of -64 to +64 (or -8192 to +8192 if 
they take the LSB into account).  

Normally when you send a Pitch Bend command, all of the notes sounding on a Channel will be 
affected equally. However, some devices are smart enough to apply incoming pitch bend not to all notes, 
but just to notes being held down on the keyboard, and not notes being held with a sustain pedal. 
Therefore, if you play a chord and “latch” it with a sustain pedal, and then play a key and hold it down 
while you send a pitch bend command, the chord will not bend, but the single note you’re holding will. 
Since this can be used to simulate the bending of a single string within a guitar chord, it is sometimes 
called “Guitar mode”. 

Running Status Messages 
Normally, a MIDI message consists of a Command or Status byte and the appropriate Data bytes, 

which are then followed by the next message’s Command byte and so on. However, the MIDI 
Specification allows for a special condition in which a single Command byte can be followed by a long 
string of Data bytes. 

Imagine you are playing a key, and while you hold it down, you vary the Pressure to create vibrato. 
You start with no pressure, increase it to maximum, and then slowly release it. This action could produce 
a total of 254 different Channel Pressure messages—127 up and 127 down. Since the Command byte is 
always the same, and only the Data byte changes, if it were possible to send just the changing Data 
bytes, it would reduce the amount of data by 50 percent. As we have seen, the bandwidth of  a MIDI 
cable is finite; so reducing the flow of bits can help to avoid butting up against those limits.  

"Running Status" allows you to do exactly this. It can be used with any of the messages described so 
far, whether they take one Data byte or two. Running Status is a “condition” of the MIDI data stream. It is 
invoked if a Command byte is received followed by a number of Data bytes that is higher than the normal 
number of Data bytes associated with the Command byte. The extra Data bytes are assumed to be 
associated with the last Command byte received, and are processed just as if the Command byte had 
been repeated. It is for this reason that a MIDI Note On with velocity 00 is considered a "note off": when 
Running Status is active, a note that is on can be turned off with just a note number and velocity 00 (2 
bytes) instead of a full Note Off command (3 bytes). 
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System Messages 
The commands we’ve talked about so far are collectively known as “Channel Voice Messages”, 

because they contain Channel numbers and they address one musical “voice” or instrument, at a time, 
on a specific MIDI Channel. The remaining commands in the MIDI Specification are “System” messages, 
and contain no Channel numbers. The first digit of a System message (in hex) is always “F”.  

System Common 
Messages F1H through F7H are known as “System Common," because they are common to all 

receiving devices.  
 

Name Hex value  Decimal value Data bytes 

MIDI Time Code 1/4 Frame F1 241 1 (timecode nibble) 

Song Position Pointer F2 242 2 (MSB, LSB) 

Song Select F3 243 1 (song number) 

Tune Request F6 246 0 

End of Exclusive (see below) F7 247 0 

 
F1H is used to tell a sequencer or other device how fast it should be playing (in "absolute" time, not 

in terms of tempo), and is based on the standard frame rate of a video signal. It is used in systems where 
a sequencer is following a device that is generating SMPTE timecode, like multitrack audio or video 
players. F1 messages are sent at a constant rate of approximately 120 times per second in North and 
Central America and Japan, or 100 times per second in most of the rest of the world. 

F2H is used in non-SMPTE based systems to tell a MIDI sequencer where to start when it receives a 
Continue command (below). The data bytes specify the number of 16th notes from the beginning of the 
sequence. There are 16,384 possible values for the data bytes, so Song Position Pointer can be used to 
specify a location in a sequence up to about 1000 measures long. 

F3H is used with sequencers that have multiple song memories to specify which song they are 
supposed to play when they receive the next Start command (below).  

F6H is Tune Request. This was originally intended for use by digitally controlled analog 
synthesizers. It tells them to execute whatever self-tuning routines are built into them. Although there are 
still plenty of these types of synths around, very few respond to this command, mostly because they are 
stable enough that they don’t need to be retuned after they are turned on.  

System Real Time Messages 
Another group of System messages are referred to as “System Real Time”, because they generally 

are used to synchronize equipment as it is running. System Real Time messages have no Channel 
numbers, and no Data bytes. They can be inserted into the MIDI data stream at any time, even in the 
middle of another message, and they can even pop up in the middle of Running Status without 
interrupting it (i.e., they are not interpreted as new Command bytes). 
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Name Hex value Decimal value 
Timing Clock F8 248 

Start FA 250 

Continue FB 251 

Stop FC 252 

Active Sensing FE 254 

System Reset FF 255 

 
The first four are used, similarly to those mentioned above, to synchronize time-based MIDI devices. 

F8H is Timing Clock, or just “Clock”. Timing Clocks are used to lock two or more MIDI devices to the 
same tempo. They are generated 24 times per quarter note, and they change with the tempo (unlike 
MIDI Time Code Quarter Frame messages, which can change with tape speed, but not tempo). A 
“master” device sends out Timing Clocks, and a “slave” follows them. 

Timing Clock is also called “MIDI Sync”, although that term (which doesn’t appear in the MIDI 
Specification) is more properly used in a broader sense, encompassing the Start, Stop, and Continue 
commands, and sometimes Song Position Pointer as well. Therefore, when we speak of a device like a 
sequencer or drum machine being “MIDI Sync compatible,” it means it responds to all of these 
commands. 

FAH is Start message. This tells a device to go to the beginning of its song and start playing, at the 
tempo determined by the incoming Timing Clock messages that follow immediately. 

FBH is Continue message, which is similar to Start, except that the receiving device will play from 
its current location, not (necessarily) from the beginning. It often follows a Song Position Pointer 
message. 

FCH is Stop message. This tells a device to stop playing, and wait for a Start or Continue (not just a 
Timing Clock). 

Modes 
In the early days of MIDI, Modes were a very big deal, and a description of them was found at the 

beginning of every discussion of the MIDI Specification. The advent of polyphonic, multitimbral 
synthesizers and samplers has made Modes far less important than they were. There are, however, 
situations in which they can be useful. 

There are four MIDI Modes, which are sometimes settable from a synth’s front panel, and can also 
be set by using two Continuous Controller “switches”: Omni On/Off (Controllers 7D and 7CH) and Poly 
On/Mono On (Controller 7F and 7EH). The value bytes of all of these commands (except sometimes 
Mono On, as we shall see in a moment) are supposed to be irrelevant, but some synths require non-zero 
values or even 7FH in order to act on them. 

In Omni On mode, a receiving device will respond to data on all MIDI Channels. In Omni Off mode, 
it will respond on just one Channel, or in the case of multitimbral synthesizers, multiple but specific 
Channels.  

In Poly mode, a device will respond to multiple incoming notes (like a chord) polyphonically.  
In Mono mode, the device will only play one note at a time: i.e., homophonically. (“Monophonic” is 

actually a term from the world of audio, while “homophonic” is the correct musical term for music 
consisting of a single voice, but the former is increasingly used to mean the latter. So it goes.) 

These four Mode messages also imply an “All Notes Off”: whenever a synthesizer receives them, it 
must turn off all of its voices before switching modes. They are not, however, supposed to be used 
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instead of a true All Notes Off message (see above). 
So the four modes, corresponding to the four possible states of the Controller switches, are: 
Omni On/Poly, also known as Mode 1, which is useful in situations with one MIDI transmitter and a 

small number of receivers, all of which are to be played simultaneously without any distinction by 
Channel number; 

Omni On/Mono, or Mode 2, which is never used;  
Omni Off/Poly, or Mode 3, which is by far the most common mode; and 
Omni Off/Mono, or Mode 4, which deserves some further discussion. 

 

Mono (Mode 4) 
Omni Off/Mono has some interesting peculiarities. First of all, a synth in Mono mode will assign 

“priority” to incoming MIDI notes, to determine which note will actually sound. This priority scheme may 
favor the last note received, the note that has been held the longest, the highest note, or the lowest. 

Second, in Mono mode, many synths assume a rudimentary kind of multi-timbral identity. In some 
early polyphonic MIDI synthesizers, such as Sequential Circuits’ Six-Trak and Casio’s CZ-101, the user 
had a choice of having all of the available “voices” (that is, the number of simultaneous notes the device 
was capable of playing) respond to one MIDI Channel with a single sound or timbre (Poly mode), or to 
assign each voice to its own MIDI Channel, with its own timbre (Mono mode). The number of Channels it 
could play was equal to the number of voices: six in the case of the Six-Trak, four in the CZ-101. This 
meant that one synthesizer could function as the equivalent of four or six individual instruments, each 
capable of playing only one note at a time. 

Mono-mode synthesizers have a “Basic Channel”. Notes are received on this Channel, as well as on 
the next n-1 Channels, n being the number of voices in the synthesizer. For example, if a four-voice 
Mono synthesizer has its Basic Channel set to 11, it will receive notes on Channels 11, 12, 13, and 14. If 
a four-voice Mono synth has its Basic Channel set higher than 13, either it will run out of voice/Channel 
assignments, or it will “wrap” the upper voices around to Channels 1, 2, etc. Control Change, Program 
Change, and other voice messages can normally be sent on any of a Mono synth’s active Channels, and 
they will affect only that Channel.  

When a Mono On message is sent, the Data byte following it specifies how many MIDI 
voice/Channel assignments will be made. If the second Data byte is 0, the device is supposed to 
respond on the Basic Channel and as many MIDI Channels above it as it has voices for. In practice, 
however, Mono synths have a fixed number of voices and Channels, and so the second Data byte in the 
Mono mode message is usually ignored. 

Although multitimbral synthesizers have eliminated the need for fixed voice-allocation schemes like 
these, Mono mode still has some important functions. One is in conjunction with MIDI guitar controllers. 
A guitar controller connected to a six-voice synthesizer in Mono mode can send information for each 
string on its own MIDI Channel. This is particularly important when bending a string: the Pitch Bend 
generated will affect only the Channel controlled by that string, and no other Channels will be affected. 
(The whammy bar will usually affect all six Channels simultaneously.) 

Mono mode is also used when you want to simulate an old-fashioned mono synth with a polyphonic 
synthesizer. Normally on a polyphonic synth, when you play two notes in quick succession, the envelope 
of the first may ring over into the second. In Mono mode, however the envelope of the first note will be 
cut off when the second note starts.  

Many synthesizers use an implementation of Mono mode that allows smooth legatos to be played 
from a keyboard: when the second note is played, the envelope is not re-triggered, but instead the first 
envelope continues, at the pitch of the second note. This is particularly useful with MIDI wind controllers, 
or when trying to emulate a wind instrument or human voice. Often this legato function can be turned on 
and off with a specific Control Change command. 



 
 
 
 

 
 
 
 

20 

System Exclusive Messages 
A message that starts with F0H is called “System Exclusive”. System Exclusive (often called 

“SysEx”) messages were originally designed so messages could be sent to individual devices in a 
system, specified by manufacturer and model, and other devices on the line (which might even be tuned 
to the same MIDI Channel) would ignore them. 

Here's a simple application of System Exclusive commands: a set of parameters describes a 
program; say a piano sound, on a certain model of synthesizer. You have another synthesizer that’s the 
same model, and you want that piano sound to be available in the second synthesizer too. You could 
look at all of the parameters on the first synthesizer, write them down, and then enter them one at a time 
into the second synthesizer. Or, you can tell the first synthesizer to arrange all of the parameters in a 
System Exclusive message in a pre-determined order, and send them over a MIDI cable to the second 
synthesizer. If the second synthesizer is set up to accept System Exclusive messages, it will receive the 
list of parameters, and store them in the proper order in one of its program registers. When you call up 
that register on the second synth, it will play the same piano sound. Because the messages describe a 
sound for a certain type of synthesizer, any other synth on the line that is not the same model will ignore 
the message completely. 

This type of parameter-list exchange is called a “System Exclusive dump” or “Parameter dump”. A 
dump can contain the parameters of a single voice, or the parameters of all of the voices in a synth’s 
memory, in which case it’s often called a “Bulk dump”. Thus a System Exclusive message can be many 
hundreds or even thousands of bytes long. Many hardware synthesizer manufacturers offer computer 
editing software for their instruments; System Exclusive messages are how the computer and the 
instrument communicate with each other. 

Immediately following the F0H header, a System Exclusive message contains a special 
Manufacturer’s ID number. These ID numbers are assigned to manufacturers by the governing bodies 
that control the MIDI Spec, the (US-based) MIDI Manufacturers Association and the (Japan-based) 
Association of Musical Electronics Industry. What follows the Manufacturer’s ID is whatever the 
manufacturer wants: usually the first thing is a model number or code, but it can be literally anything at 
all, and it can last as long as the manufacturer wants. Any device receiving the System Exclusive 
message that is not supposed to respond to it should ignore it completely.   

At the end of any System Exclusive message is an F7H byte. This is called, not surprisingly, “End of 
System Exclusive”, and is sometimes abbreviated in documentation as “EOX.” When an F7H is 
received, all the devices on the system that had been ignoring the System Exclusive message “wake 
up,” and pay attention to whatever comes next. Until the F7H is received, a System Exclusive message 
should not be interrupted. The EOX command does not have any data bytes. 

Universal System Exclusive 
A sub-class of System Exclusive messages is called “Universal System Exclusive”. This may strike 

you as an oxymoron (like “jumbo shrimp” or “reasonable attorneys’ fees”), but it is real nonetheless. Most 
extensions to the MIDI Specification in recent years have fallen into this category, because it remains the 
most “open” part of the Spec. These extensions include: 

• Experimental or “Non-Commercial”, for internal use by research and educational institutions, and 
not in any products that are allowedto be released to the public. 

• Sample Dump Standard, which allows MIDI-based sampling synthesizers and computers to 
exchange data. 

• Tuning Standard, which allows alternative tunings to be used in MIDI instruments. 
• Some MIDI Time Code messages, which allows synchronization and control of MIDI devices.  
• MIDI Machine Control and MIDI Show Control, which expand MIDI into the worlds of transport 

automation and live presentations. 
Non-Commercial SysEx messages have an ID of 7DH, so such messages will always start with 
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F0 7DH. Sample Dump Standard and Tuning Standard messages fall under the classification of “Non-
Real Time” Universal System Exclusive, which have an ID of 7EH, while MIDI Time Code, MIDI Machine 
Control, and MIDI Show Control messages are classed as “Real Time,” and have an ID of 7FH. As with 
all SysEx messages, at the end of any of these messages there must be an EOX byte, F7H. 

 
MIDI Yesterday, Today, and Tomorrow 

MIDI has been around for some 35 years, which is far longer than most other digital communications 
protocols. The people who created it were smart: they made sure there were ways that the language 
could be expanded and made more useful as new music and audio technologies evolved. They also 
designed it so it would stay relevant as new and faster methods of sending data electronically were 
developed. 

No one could have imagined when witnessing two expensive synthesizers being connected together 
at a NAMM show that there would someday be billions of MIDI-enabled devices on the market. Yet 
there are: every smartphone, tablet, and computer has built-in MIDI capabilities that far outstrip those of 
the instruments the creators of MIDI had in mind, when they developed the brilliant idea of getting two 
synthesizers from different manufacturers in different countries to talk to each other. And now in the 21st 
Century, MIDI technology continues to empower musicians around the world as they seek to connect, 
learn, and create music. 

Already the MIDI community is getting ready for the next generation of musical tools, and additions 
to the MIDI Specification are or will soon be in place to handle MIDI in Web applications, instruments 
with multiple dimensions of expression, and high-speed, high-resolution data transports. MIDI created 
the electronic music world we know today, and will continue to be a crucial part of it tomorrow. 

 
Excerpted and adapted from MIDI For The Professional, by Paul D. Lehrman and Tim Tully. 
Updated and © 2017 by Paul D. Lehrman 




